ارزیابی مدل SWAP در شیب‌سازی انتقال آب و املاح در نیمرخ خاک

علی رضا کیانی و مهدی همایی

چکیده

برای توصیه و کاربرد مدل‌های ریاضی برای پیش‌بینی انتقال آب و املاح در شرایط آبی، از این مدل SWAP به‌دست دو سال زراعی (1980 و 1981) در زمین‌پوشی شده‌ای که تحت کشت‌گذار در شال مالکا نورد ارزیابی قرار گرفتند استفاده شد. نتایج نشان داد که در شیب‌سازی کم‌قد، با استفاده از چهار سطح اب‌بای‌ازیری شال‌های 100 (W1), 15 (W2), 10 (W3) و 5 (W4) درصد ناز‌گیاه‌های هر سال رطوبت شوری شال‌های 15، 10 و 12/7 درصد میانگین بر متر در قالب طرح میتوان گام‌هایی را در پیش‌بینی بخش شرایط منطقه‌ای و شیب‌سازی را معرفی کنند.

واژه‌کلیدی

انتقال آب و املاح، بی‌خیر و تعرق، شیب‌سازی، گندم، مدل SWAP

نیمی گردن، برسلر و هافمن (1984) و منیشاس و گوتیئا (1993) اعلام کردند که با دلیل تغییرات شوری نسبت به زمان و مکان، مدل‌های فوق برای شیب‌سازی دیتابیس انتقال آب و املاح مناسب نیستند و برای در نظر گرفتی تغییرات اشیاء شده باید از مدل‌های غیر منیشاسی استفاده کرد. کیت و گرین (Keith & Green, 1991) یک جامعیت کاربرد مدل‌ها در شیب‌سازی پایدارهای واقعی از نظر ساختاری به‌جوار گروه

لیست منابع

در نظر گرفته شده مدل‌های چهار نوع مدل‌ها روابط پیچیده آب خاک انسخاف و گیاه توعیف یافته‌اند. تعدادی از این نوع مدل‌ها مولز (1981) و ونکرت (1983) جمع آوری کردند. اسکاله این نوع مدل‌ها به دو دسته مدل‌گار و غیر مدل‌گار تقسیم می‌شوند. مدل‌های مدل‌گار مدل‌های هستند که وکنش گیاهان را در مقابل تغییرات زمانی و مکانی شوری و رطوبت خاک در نظر

مقامات

مجله تحقیقات مهندسی کشاورزی/جلد 8/ شماره 1/ ایام 1386/ ص 13-20
توصیف مدل

مدل SWAT مدل با استفاده از معادله عمومی و یک بعدی

\[\frac{dC}{dt} = \frac{\partial}{\partial z} \left(K(h) \frac{dC}{dz} - K(h) \right) - S_u(z, t) \]

که در آن \(h \) = بر اثر فشار آب خاک (بر حسب سانتی متر) \(K \) \(= \) هدایت هیدرولیکی غیر اشباع (بر حسب سانتی متر بر روز) \(= \) ظرفیت آب خاک (بر حساب یک بر سانتی متر) \(\frac{\partial}{\partial h} \) = برای شبیه‌سازی بهبودی‌گزاری آب در خاک (\(z \) = زمان (بر حسب روز) \(\theta \) = عمق خاک (بر حساب سانتی متر) و \(Z \) = تخلیه آب خاک (بر حسب سانتی متر مکعب بر سانتی متر مکعب روز) است. \n
مدیر SWAT (مقدار \(S_u(z, t) \)) \(= \) سه گروه به عنوان متغیر باید در صورتی اعمال شوند که از نسبت بتن اکسیژن گیاه به عمق توسه ریشه در شرایط بدون نا منجر به محاسبه تغییرات در فضای خاک را به دست آورد. \n
\(S_{\text{max}} \) (درصد مقدار حداقل \(S_u(z, t) \)) است که از نسبت همکاری باعث افزایش گیاه به عمق توسه ریشه در شرایط تحت تنش از ارتفاع 2 می‌آید.

\begin{tabular}{|l|l|l|l|}
\hline
1- Single-Process & 2- Multiple-Process & 3- Comprehensive & 4- Field Scale \\
\hline
5- Soil Water Atmosphere Plant & 6- Soil Water & Actual Transpiration Rate Extended & 7- Mean Absolute Error \\
8- Soil Water Simulation Model & 9-Leaching Estimation & Chemistry Model & 10- Sink Term \\
\hline
\end{tabular}

(Van Dam et al., 1997)

شیب‌سازی انتقال آب و املاح در محیط‌های اشباع و غیر اشباع

اولین نخست این مدل، که فدراس و همکاران (Feddies et al., 1978) آن را توسعه دادند. با استفاده از مدل گزینه‌های مختلف توزیع آب آبیاری و ارزیابی کردن و بهبود گرفتن که اگر مقدار آب نامحدود باشد، برنامه‌ریزی آب‌یاری بر اساس نتایج به توزیع آب

بر اساس مقادیر نهایی، پرهوری آب را 20 درصد افزایش می‌دهد. فلچر و همکاران (Fechther et al., 1991) مدل SWATRE را برای پیش‌بینی اثر آب‌یاری ارزیابی کردن. نتایج ارزیابی آن‌ها نشان داد که این مدل رطوبت خاک را به خوبی شبیه‌سازی می‌کند. این روش‌های خطرات مطلق 3/5

درصد پیش‌بینی کردن. در طول رطوبت خاک، دو نوع کش و گد و ارزیابی و ضرب عیار \(R^2 \) (را برای دو گیاه به ترتیب 76 و 84 درصد پیش‌بینی کردن. کلمنت و همکاران (Clement et al., 1994) نتایج شبیه‌سازی

رطوبت خاک حاصل از مدل SWASIM SWATRE و LEACHM را با نتایج ارزیابی گیری شده مقایسه کردن. همه

مدل‌ها رطوبت خاک را به خوبی شبیه‌سازی کردن.
ارزیابی مدل SWAP در شیمی سالی انقلاب آب و ...

\[S_s(z,t) = \alpha(h)S_{\text{max}} \]

که در آن، \(\alpha(h) \) تابع کاهش نامیده می‌شود و بستگی به بار فشار آب خاک و بین صفر تا 1 در نوسان است و ویژگی Wyseure et al., 1994 و همکاران (1994) آن را به صورت معادله

\[\alpha(h) = 0 \quad h < h_u \quad \text{or} \quad h \geq h_{\text{pop}} \]

\[\alpha(h) = \frac{h - h_u}{h_{\text{fc}} - h_u} \quad h \leq h_{\text{fc}} \]

\[\alpha(h) = 1 \quad h < h_c \]

\[a(h) = \left(\frac{1}{h_{\text{pwp}}} - \frac{1}{h} \right) \quad h < h_{\text{pop}} \]

\[a(h) = \left(\frac{1}{h_{\text{pwp}}} - \frac{1}{h_c} \right) \quad h < h_{\text{pop}} \]

گزاره جویی و همکاران (1991) بر اساس مقادیر معمول (Jury et al., 1991) در شرایط آمالی‌گاهی بین 5 تا 20 سانتی‌متر و در شرایط مزرعه‌ای بین 5 تا 20 سانتی‌متر در نظر گرفته‌اند (در این پژوهش مقدار آن برای 15 سانتی‌متر فرض شده است. برای محاسبه سی (\(S_s(z,t) \)) نیز می‌توان نوشت:

\[S_s(z,t) = \alpha(h_u)S_{\text{max}} \]

که در آن، \(\alpha(h_u) \) تابع کاهش نامیده می‌شود و مقدار آن بستگی به هوریزونت آب خاک و بین صفر تا 1 در نوسان (Maas و Hoffman, 1977) است و تابع ماس و هافمن، 1977 به‌دست می‌آید.

\[a(h_u) = 1 - \frac{a}{360}(h^* - h_u) \]

که در آن، \(a = \) شیب خط رابطه عملکرد نسبی - شوری خاک (برابر 2 درصد دسی‌زیمنس بر متر)، \(h_u = \) شوری عصره اشتباه خاک (بر حسب دسی‌زیمنس بر متر) و \(h^* \) مقدار استاندارد شوری خاک (بر حسب دسی‌زیمنس بر متر) است. استاندارد شوری خاک (بر حسب دسی‌زیمنس بر متر) است. برای حل معادله‌های دیفرانسیلی فوق نیاز به تابع

\[\Theta(h) \]

\[\frac{\partial(\Theta)}{\partial t} = \frac{\partial}{\partial z} \left(qL \frac{\partial c}{\partial z} - qc \right) - S_s(z,t) \]

1- Convection – Dispersion
کیانی و هماهنگی

داده‌های مورد نیاز برای جریان عبور به کمپپت آب آبیاری، توزیع شوری و رطوبت در نیمک خاک از ۱۶ تیمار آزمایشی تعیین شد. تیمارها شامل ۴ سطح مقدار آب (۵۰ و ۱۰۰ و ۱۲۵ و W۱) درصد نیاز آبی گیاهی به همراه ۴ سطح شوری آب آبیاری (S۱، S۲، S۳ و S۴) که در سال اول به ترتیب بالای از ۱۰/۸، ۱۰/۷، ۱۰/۶ و ۱۰/۵ دم معاویل ۱۱/۹ و ۱۲/۱ و ۱۲/۰ و ۱۱/۸ دم زیمنس بر متر بود. تیمارها در سه تکرار و در کریه‌های آبی ابعاد ۴۲۰ متر با فاصله ۲ متر از یکدیگر و در زمین تحت کشت گندم به اجرا درآمدند (محال کریه طی دو سال آزمایش ثابت بودند). در هر سال چهار نوبت انجام شد. در سال اول مقدار آب W۴ و W۵ و W۱ درصد نیاز آبی گیاهی به ترتیب ۱۴۷، ۱۴۶ و ۱۱۸ میلی‌متر و در سال دوم ۱۴۷، ۱۴۶ و ۱۱۸ میلی‌متر (Smith، 1992) برآورد شد. توزیع رطوبت (به روش وزنی) و شوری (به روش عصاره اشباع) در نیمک خاک تا عمق پایین‌تر از ارتفاع هر ۲۰ سانتی‌متر از سطح خاک در تیمارهای مختلف با نمونه‌گیری در جند مرحله زمین (زمان کاشت، قبل و بعد از ساخت و ساخت از آبیاری و در زمان برداشت) تعیین شد. رطوبت و شوری نیمک خاک به عنوان شرایط اولیه، عوامل اقلیمی به عنوان شرایط مزرعه بالا و زهکشی آزاد در سال اول و عوامل مختلف سطح آب زیرزمینی در سال دوم به عنوان شرایط مزرعی پایین به مدل داده شدند. عوامل گیاهی مانند عملکرد دانه، اجزای عملکرد، عمق ریشه، ارتفاع گیاه و سطح برگ اندازه‌گیری و ضریب واکنش (Doorenbos & Kassam، 1979) استفاده شد. مقدار آب مصرفی گیاهی از طریق اندازه‌گیری اجزای بیلبان آب بر اساس رابطه زیر محاسبه شد:

\[ET = I + P - (D_d + R_w) + \Delta S \]

۱۰

\[\theta(h) = \theta_s + (\theta_r - \theta_s) \left(1 + \frac{|ah|}{m} \right)^{-m} \]

\[K(s_c) = K_s s_c^{0.5} \left[1 - \left(1 - s_c^{1/m}\right)^{m} \right] \]

که در آن، \(K_s \) = هدایت هیدرولوژیکی اشباع خاک (بر حسب سانتی‌متر بر زور) است.

برای برآورد ضرایب عمدل‌های‌های غیرخطی فوق، آلگوینچت و همکاران (۱۹۹۱) برنامه RETC را پیشنهاد کردند.

روش اجرا

این پژوهش در منطقه شمال گرگان به مدت دو سال زراعی (۸۸-۸۷) در زمین تحت کشت گندم به اجرا درآمد. به دلیل محدودیت شوری و خشکی، سطح وسیعی از منطقه شمال شرقی استان گلستان به کشت گندم و جو اختصاص دارد. عوامل اقلیمی شامل باران، دما، رطوبت نسبی، سرعت باد و سه‌شیاری بیشتر روزاره از ایستگاه هوایی و در مورد کم‌بوده به نتیجه‌برین ایستگاه مشابه اقلیم منطقه (سیلوپتیک گیبس) گرفته شد.

1- Retention Curve
2- United State Department of Agriculture
3- Yield Response Factor
از ریزپایی SWAP در شبیه‌سازی انتقال آب و ...

فسوشرایت و محصول فسوشرایتی رطوبت حجمی خاک در مکان‌های مختلف انتقال‌گیری شد. به کمک داده‌های فوق و برنامه‌برداری تابع هیدرولوژیک خاک و از روش بارRETCA انتخاب کرده‌ایم. تعیین شد. جدول ۱ نتایج برآوردهای رطوبت هیدرولوژیک خاک و همچنین مقادیری برای حل معادله ۹ را به تفکیکی در عمق نشان می‌دهد.

جدول ۱- بعضی از ضرایب جی‌کوس و توابع هیدرولوژیک خاک

<table>
<thead>
<tr>
<th>n</th>
<th>a</th>
<th>Bb</th>
<th>K(درصد حجمی رطوبت)</th>
<th>θ(درصد حجمی رطوبت)</th>
<th>θ(درصد حجمی رطوبت)</th>
<th>θ(درصد حجمی رطوبت)</th>
<th>θ(درصد حجمی رطوبت)</th>
<th>عمق خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/346</td>
<td>0/28</td>
<td>0/15</td>
<td>14</td>
<td>0/42</td>
<td>0/8</td>
<td>0/12</td>
<td>0/24</td>
<td>0/36</td>
</tr>
<tr>
<td>1/347</td>
<td>0/29</td>
<td>0/18</td>
<td>9/9</td>
<td>0/49</td>
<td>0/9</td>
<td>0/13</td>
<td>0/26</td>
<td>0/39</td>
</tr>
<tr>
<td>1/348</td>
<td>0/29</td>
<td>0/21</td>
<td>8/3</td>
<td>0/51</td>
<td>0/12</td>
<td>0/24</td>
<td>0/36</td>
<td>0/49</td>
</tr>
</tbody>
</table>

معادله‌های دیفرانسیل ۱ و ۴ برای گام‌های زمانی یک روز و مکانی ۵ سانتی‌متر از عمق خاک با استفاده از روش عددی اختلاف‌های محدودحل شدند. برای ارزیابی مدل علاوه بر ضریب همبستگی (R)، انحراف معیار (S)، انحراف معیار (R) (Loague & Green, 1991) شاخص‌های آماری به‌شمارند. شاخص (RMSE) میانگین خطای مطلوب (MAE) و ضریب مقدار باقی‌مانده (CRM) عبارت‌اند از: ریشه میانگین مربعات خطأ (RMSE), میانگین خطای مطلوب (MAE) و ضریب مقدار باقی‌مانده (CRM) اشاره شده به شرح زیر است:

\[MAE = \left(\frac{1}{n} \sum_{i=1}^{n} |O_i - S_i| \right) / n \]

\[CRM = \left(\frac{1}{n} \sum_{i=1}^{n} \left(P_i - \sum_{i=1}^{n} P_i \right)^2 / \sum_{i=1}^{n} O_i \right) \]

\[S_d = \left(\frac{1}{n} \sum_{i=1}^{n} (O_i - \bar{O})^2 / n \right)^{1/2} \]

که در این معادله‌ها، \(n \) به ترتیب نمایندگی ضرایب پیش‌بینی شده، اندازه گیری شده، متوسط مقادیر انجام گیری شده و تعداد داده‌ها هستند و شاخص \(n \) نشان‌دهنده باعث از داده‌های است.

1- Pressure Plate 2- Pressure Membrane 3- Falling Method 4- Bulk Density
5- Finite Differences 6- Standard Division 7- Root Mean Square Error 8- Coefficient of Residual Mass
آخر رشد به دلیل منظر گرفتن زهکشی آراد برای شرایط مرزی پایین، مدل تنوانسته است رطوبت خاک را به خوبی مراحل دیگر سیاسی کن. اختلاف دوم مربوط است به تنبیه‌های شور و در عمق خاک به طوری که مدل رطوبت خاک، با این اختلاف کمیک می‌شود. اگر RMSE کمتر از نشاندهندگی کارکرد مطابق مدل است، هرگاه همان شرایط برای مقایسه ابزار از مواضع، مشخص می‌گردد که چه مقادیری از سیستم‌های

RMSE

بهتر است. اگر CRM بهتر از شاهد RMSE شده باشد نشان دهنده کارکرد

مطابق مدل است. با این‌حال، ممکن است برای مقایسه

اصطلاح مفردیگری شده باشد به این‌نام براورد CRM متوسط و

شرایط مورد شوری شده برای کردن. برای روش شدن موضوع، نشان می‌دهد.

در مراحل اولیه رشد گندم، که هنوز افرادی به سیستم تغذیه و خیز حاکم است. در هر دو سال بین مقایسه سیایی شده و واقعی رطوبت اختلافی نیست. اما در مراحل بعدی و در عمق‌های پایین‌تر، مقایسه شیب سوزی شده ادکلی کمتر از مقایسه واقعی

بسته، از آنجا که شوری در تبیین خاک مشاهده و در سطح

با درجات از استعامت از نظر مدل، گیاه می‌تواند

انجام گیرد. این جذب کنونی در شرایط واقعی امری که یکی برای جذب در

شرایط شوری کمیته مقدار جذب دچار اختلال می‌شود. عامل دیگر اختلاف مشاهده‌شده با پارامترهای هیدرولوگیک خاک خصوصاً در خاک مربوط

است. در SWAP 2003 (Dorji) در مدل

۱۷۷ (روز پس از گسترش) و در عمق 200-80 سانتی‌متر

خاک است. در این مدل، مدل برای همه تنبیه رطوبت

خاک را که شکل قابل توجه کمتر از مقایسه کرده‌گری شده

نشان داد (شکل ۱). یکی از عوامل اصلی این اختلاف به بالا

آمدن سطح سفره‌های مشاهده‌سازی در خاک آب‌زرمینی می‌باشد که دلیل

آب‌های کردن آنها برای کشت شالی در اواخر دوره رشد مربوط

است. این اختلاف در سطح‌های دیگر و همچنین در سال

دوم (شکل ۲) که سطح آب‌زرمینی در مراحل مختلف

به عنوان شرایط مرزی باینواژ وارد مدل شدند وجود ندارد،

با این‌همه می‌توان گفت که در سال اول و در مرحله

نویز و پیدایش مورد و شوری خاک

تشکل‌های ۲ و مقایسه رطوبت اندازه‌گیری شده در

مقایسه شیب سوزی شده با مدل SWAP سازش انجام شده و در سال

۱۷۸ (روز پس از گسترش) و در عمق 200-80 سانتی‌متر

خاک است. در این مدل، مدل برای همه تنبیه رطوبت

خاک را که شکل قابل توجه کمتر از مقایسه کرده‌گری شده

نشان داد (شکل ۱). یکی از عوامل اصلی این اختلاف به بالا

آمدن سطح سفره‌های مشاهده‌سازی در خاک آب‌زرمینی می‌باشد که دلیل

آب‌های کردن آنها برای کشت شالی در اواخر دوره رشد مربوط

است. این اختلاف در سطح‌های دیگر و همچنین در سال

دوم (شکل ۲) که سطح آب‌زرمینی در مراحل مختلف

به عنوان شرایط مرزی باینواژ وارد مدل شدند وجود ندارد،

با این‌همه می‌توان گفت که در سال اول و در مرحله
برای تحلیل نهایی دقت مدل در شبیه‌سازی رطوبت خاک، شکل ۲ و جدول ۲ ارائه می‌شود که به ترتیب مقادیر شبیه‌سازی‌سازه رطوبت خاک در مقیاس مقادیر اندازه‌گیری شده، و تحلیل آماری آنها را به تفکیک دو سال نشان می‌دهند. همانطور که مشاهده می‌شود، نتایج سال دوم نسبت به سال اول به طور کلی رضایت‌بخش‌تر است.

عامل اصلی آن به تغییر شرایط موزی یا پایین مرتبط است. در سال اول، شرایط موزی یا پایین به صورت زیادی و در سال دوم سطوح آب زرس‌مانی در جنرال به عنوان شرایط موزی یا پایین وارد مدل شدند. در هر دو سال، ضریب R بالا و مقادیر MAE و $RMSE$ در حد پایین است. در و در سال پایانه $SWAP$ (مدل $SWACROP$) در SWAP از در شبیه‌سازی رطوبت خاک برای دو گیاه پنبه و گندم ازبایی

1- Soil Water Atmospheric Crop
شکل ۲ - مقادیر اندازه‌گیری شده رطوبت (O) در مقابل مقادیر شبیه‌سازی شده توسط مدل SWAP
مدل خاک در تیمارهای مختلف آبی سال ۱۳۸۲

شکل ۳ - مقادیر اندازه‌گیری شده رطوبت (بر حسب درصد حجمی رطوبت) در مقابل مقادیر شبیه‌سازی شده توسط مدل SWAP در سال‌های ۱۳۸۲-۱۳۸۴ (N تعداد داده‌ها و R ضریب همبستگی داده‌هاست)
جدول 2- ارزیابی آماری رطوبت شبیه‌سازی شده توسط مدل SWAP

<table>
<thead>
<tr>
<th>ضرایب</th>
<th>1382</th>
<th>1381</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>MAE</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CRM</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>S0</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

برای ارزیابی مدل در شبیه‌سازی شوری خاک، شکل‌های ۴ و ۵ ارائه شده‌اند. این شکل‌ها تغییرات شوری اندازه‌گیری شده در نیمرخ خاک را در چند مرحله زمانی به تفکیک هر سال در مقابل مقادیر شبیه‌سازی شده توسط مدل نشان می‌دهند. مشاهده می‌شود که پیشرفت SWAP اتفاق مدل با مقادیر اندازه‌گیری شده از نظر زمانی مربوط به مرحله قبل از تیمار آبیاری (به ترتیب ۸۸ و ۹۰ روز پس از کاشت در سال ۸۲ و ۸۲) در تیمار‌های غیر شور است. اما بین مقادیر شبیه‌سازی شده با مقادیر اندام‌گیری شده شوری خاک در مراحل بعدی رشد و در تیمار‌های شور (S1، S2) اختلاف مشاهده می‌شود و برای هر دو سال تقیب‌اً روید مشابهی دارد. همان‌طور که در شکل‌ها مشخص است توزیع شری در نیمرخ خاک در تیمارهای شور غیر یکنواختتر از تیمارهای غیر شور است. در چندین شرایط به دلیل جذب آب از نقاط غیر شور توسط مدل و ایجاد گرادیان حرفه‌ای در خاک، میزان تخلیه رطوبت به وسیله مدل با مقادیر اندازه‌گیری شده قدری متفاوت و شوری نیز نسبت به انتخاب تغییرات است. در قسمت قبیل توضیح داده شد که تعرق در Mدل نسبت به تغییرات یکی که در مدل SWAP یکی بودکه در مدل ارزیابی پایین آن K س
گیاهی و هماهنگی

شکل 4 - مقادیر اندازه‌گیری شده شوری (O)، در مقابل مقادیر شبیه‌سازی شده توسط مدل (P) SWAP، در نیم‌هفته‌های مختلف شوری سال 1381.

شکل 5 - مقادیر اندازه‌گیری شده شوری (O)، در مقابل مقادیر شبیه‌سازی شده توسط مدل (P) SWAP، در نیم‌هفته‌های مختلف شوری سال 1382.
تئیه و تعریق و عملکرد نسبي

شکل ۷. مقادیر اندازه‌گیری شده توسط مدل SWAP در مقایسه با مقادیر اندازه‌گیری شده توسط روش‌های دیگر

جدول ۳. مقادیر آماری شرایط انتقال آب و سیل در سال‌های ۱۳۸۱-۱۳۸۲

<table>
<thead>
<tr>
<th>ضریب</th>
<th>ضریب ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۸۷</td>
<td>۱۲۸۷</td>
</tr>
<tr>
<td>۱۲۸۷</td>
<td>۱۲۸۷</td>
</tr>
</tbody>
</table>

مقادیر اندازه‌گیری شده در سال دوم ET می‌تواند با مقادیر شرایط انتقال آب و سیل تشابه داشته باشد. ضمناً، مقادیر ET در سال دوم حداقل ۵۰ درصد مقادیر این سال را در بر می‌گیرند.

نتیجه تحلیل آماری این رابطه با استفاده از روش‌های CRM و RMSE، نشان می‌دهد که مدل SWAP، کاملاً آپارتمان مسئولیت در حفظ محیط زیست و حفاظت از منابع آب و سیل است. و این مدل کاملاً با مقادیر اندازه‌گیری شده تشابه دارد.

بنابراین، می‌توان به دلیل اینکه، مدل SWAP دارای عملکرد نسبی نسبت به روش‌های دیگر است، در این حالت می‌توان دو مدل RMSE و MAE را به عنوان ابزاری برای تبدیل اینکه مقدار RMSE را به عنوان ابزاری برای تبدیل اینکه مقدار MAE را به عنوان ابزاری برای تب
بلافاصله پس از باران باعث شده است تنها نفوذ عمیق در این شرایط نادیده گرفته شود (میزان بارندگی طی فصل روش گندم در سال های 1381 و 1382 به ترتیب 163 میلی متر در 25 روز و 164 میلی متر در 44 روز بود). با این حال، ملاحظه کنید که اختلاف اشاره‌شده بین مقادیر ET را شامل گیاه، و شبیه‌سازی شده ET خصوصاً در سال دوم رضایت بخش نباید.

ماتریکس بیشتر از مقادیر اندازه‌گیری شده بود و دلیل آن چنین بود که در این پژوهش بروی گردید. در روش اجرا، توضیح داده شد که در این آزمایش فرض کردن مقادیر رطوبت بیشتر از حد طرفیت زراعی رخیکی می‌شود. ولی برای دقت و حفظ، به اندازه‌گیری رطوبت خاک نیاز دارد. فراوانی روزهای بارانی، مقدار بیشتر باران در سال 1382 نسبت به سال 1381 و اندازه‌گیری رطوبت خاک

شاخص 7- مقادیر ET (میلی‌متر) شبیه‌سازی شده توسط مدل SWAP در مقایسه با مقادیر اندازه‌گیری شده ET در دو سال زراعی

<table>
<thead>
<tr>
<th>سال</th>
<th>ضرایب</th>
<th>ET (میلی‌متر)</th>
<th>CRM</th>
<th>RMSE</th>
<th>MAE</th>
<th>(درصد)</th>
<th>S_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1382</td>
<td>93</td>
<td>86</td>
<td>23/4</td>
<td>20/5</td>
<td>128</td>
<td>31/2</td>
<td>29/5</td>
</tr>
<tr>
<td>1381</td>
<td>53/6</td>
<td>32/4</td>
<td>23/4</td>
<td>20/5</td>
<td>128</td>
<td>31/2</td>
<td>29/5</td>
</tr>
</tbody>
</table>

جدول 4- ارزیابی آماری تیخیر و تعریق شبیه‌سازی شده توسط مدل SWAP
نتایج ارزیابی عملکرد نسیم گندم شیب‌سازی شده و ارزیابی عملکرد نسیم گندم شیب‌سازی شده در مقابل عملکرد نسیم اندازه‌گیری شده

در شکل 8 و نتیجه تحلیل آماری آن به تفکیک هر سال در جدول 5 ارائه شده است. به طور کلی نتایج بدست آمده در هر دو سال دلالت بر شیب‌سازی مطلوب عملکرد نسیم گندم به وسیله مدل SWAP دارد. در جدول 5 مشاهده می‌شود که ضرایب همبستگی بالا و ضریب RMSE در حد پایین است. ضریب RMSE برای عملکرد نسیم در هر دو سال کمتر از انحراف معیار است. ضریب CRM در هر دو سال کوچک و منفی است و تمابل سدلا در برآورد بالاتر از مقادیر اندازه‌گیری شده نشان می‌دهد. نتایج بررسی‌های 5 ساله روبیز و آنتیت (2003) (روی مدل SWAP) مقداری اندازه‌گیری شده نشان می‌دهد. مقداری اندازه‌گیری شده نشان می‌دهد.

![شکل 8- مقداری اندازه‌گیری شده نشان می‌دهد.](image)

از آنجایی که SWAP در مقابل مقداری اندازه‌گیری شده و ارزیابی این مدل 1382 و

<table>
<thead>
<tr>
<th>1382</th>
<th>1381</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضرایب</td>
<td>ضرایب</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 5- ارزیابی آماری عملکرد گندم نسیم گندم شیب‌سازی شده توسط مدل SWAP

<table>
<thead>
<tr>
<th>ضرایب</th>
<th>ضرایب</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>(درصد)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>(درصد)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>(درصد)</td>
<td>(درصد)</td>
</tr>
</tbody>
</table>
عملکرد نسبی به استناد تحلیل‌های آماری ارائه‌شده در این مقاله رضایت خست است. اما جهت ارائه‌ای مدل در برآورد دقیق تر عوامل اشاره‌شده و با توجه به نتایج به‌دست‌آمده موارد زیر پیشنهاد می‌شود:

- رطوبت خاک نسبت به تغییرات سطح سفره آب زیستنی حساسیت زیادی نشان می‌دهد. در تجربه تغییر دقت نوسانات سفره آب زیستنی برای تغییرین شرایط مزیت‌های به‌همنش است.

- به طور طبیعی، توزیع ریشه گیاه و آب‌های در نیم‌خر خاک غیر یکنواخت است. در این شرایط میزان جذب SWAP توسط گیاه دچار اختلال می‌شود. اما مدل فرض می‌کند که گیاه قادر است آب را از مناطق پایین‌تر که شوری کمتری دارد جذب کند.

- برای شیب‌های اتاقی انتقال اصلاح در شرایط واقعی، لازم است داده‌های ورودی ناتمام گذاشته نشود (خصوصاً‌ یک). در همان شرایط (با حضور گیاه و در شرایط شوری) اندام‌گیری شود.

- تابع کاهش عملکرد در شرایط توان شوری و کم‌آبی در مدل نیاز به پارامتری دارد.

اما عامل دیگر اختلاف‌ها مربوط به تغییر کاهش عملکرد در شرایط شوری است. در توصیف مدل توضیح داده‌شده که تابع کاهش عملکرد در شرایط شوری بر اساس رابطه دو یک‌های برآورد می‌شود. این تابع شیب عملکرد-شوری را بعد از آستانه و برای شرایط بدون تنش آب را به صورت خیلی در نظر می‌گیرد. در حالی که کیانی و همکاران (2005) نشان دادند که در نتیجه تغییر رطوبت خاک، شیب فوق نیز تابع نیست و به صورت غیر خطی تغییر می‌کند. همچنین در شرایط توان دو تنش شوری و آب‌های نیز فرض می‌کند که تابع جذب آب از حاصل ضرب دو تابع کاهش شوری و کم‌آبی پیروی می‌کند در حالی که همکاری (1999) نشان داد که در شرایط مزدوج شوری و کم‌آبی تابع حاصل ضریب نمی‌تواند اثر دو تنش را به‌خوبی کنی کند.

نتیجه‌گیری

با توجه به تغییرات عوامل متعدد در شرایط مزدوج، به طور کلی می‌توان گفت که نتایج ارزیابی مدل در شبیه‌سازی انتقال آب، املاح، تبخیر و تعرق و SWAP مناسب است.

منابع

Evaluating SWAP Model for Simulation of Water and Solute Transport in Soil Profile

A. R. Kiani* and M. Homaei

* Academic Member, Agriculture Engineering Research Department, Agriculture and Natural Resources Research Center, P. O. Box: 49165-363, Gorgan, Iran. E-mail: akiani71@yahoo.com

Many mathematical models have been applied and developed for simulation of water and solute transport in irrigated agriculture. Using a model, it should be first calibrated and validated for different regions. SWAP is a field scale model that simulates water, solute and heat movement in the soil profile. In this study, the SWAP model was evaluated for two years (2001 and 2002) on wheat in a semi-arid area in North of Gorgan. Required data were collected by field experiments. The experiments were consisted of four water quantity levels (50, 75, 100 and 125 percent of crop water requirements) and four water quality levels including S1, S2, S3 and S4 having 1.6, 7.9, 10.8 and 13.6 dS/m in the first year and 1, 9.3, 12.2 and 14.7 dS/m in the second year, respectively. The experimental design was performed by randomized complete block design as a split plot layout with three replications. Based on statistical analysis, results from the simulation of SWAP model were in good agreement with the field measurements of water content (θ), salinity (ECe) along the soil profile and wheat relative yield. In all cases, correlation coefficient (R), was higher than 80 percent and root mean square error (RMSE) was less than standard division (Sd). In the first year, bottom boundary condition was supposed to be free drainage, but due to fluctuations of water table in harvest time, model under predicted soil water content in 80-100 cm depth. Since the high frequency of rainfall (especially in second year) and elimination of deep percolation, the discrepancy between the measured and predicted ET was not satisfied.

Key words: ET, Simulation, SWAP model, Water and solute transport, Wheat