ارزیابی شبکه‌های آبیاری به روش Benchmarking

جلال جلیلی, سیدجمال جلیلی, هوشنگ قمیریا و محمدجواد منعم

* به ترتیب دانش‌آموزی کارشناسی ارشد گروه مهندسی آبیاری و زهکسی پردیس ابیور با دانشگاه آبیرقت، تهران، مشایخ امیری، مجتمع دانشگاه رازی، جنوب دانشکده علوم، معاونت پژوهشی چهار دانشگاهی گروه هیدرولوژی و منابع آب تلفن: ۴۱۳۲۴۷۶۷۷۶ (۴۸۳۲۷۷۶۷۷۶)، پیام‌نگار: jalliljia@yahoo.com

کشاورزی دانشگاه اردبیلی والی دانشگاه، کشاورزی دانشگاه تربیت مدرس

تاریخ دریافت مقاله: ۸/۴/۱۳۸۰، تاریخ پذیرش مقاله: ۸/۴/۱۳۸۱

چکیده

ارزیابی عملکرد شبکه‌های آبیاری اولین مرحله ی جهت بهبود راهکارهای بهبود شبکه‌های است. روش ارزیابی مقیاس‌های Benchmarking در شبکه‌های آبیاری اخیراً از طرف مراجع بین‌المللی مدیریت منابع آب پیشنهاد و در بعضی از کشورها نیز از این نوع استفاده گردیده است. با هدف پیشرفت در شبکه‌ها و بهبود عملکرد و تعیین اهداف و تحقیق روی روش ارزیابی مقیاس‌های Benchmarking عده‌ای و گرافیکی است. ابتدا شبکه‌ها ارزش‌های گذاری و پس از آن مقایسه آنها نمایش داده شدند. جهت موفقیت شبکه‌های ارزیابی در پنج دیدگاه مدیریت و اجتماعی، فناوری، زیست‌محیطی و شبکه‌های ارزیابی به روش Benchmarking در مراحل مختلف اجرای سطح شبکه‌های استان ساسانیان، جنوب غربی ایران، استان آذربایجان شرقی و استان تهران انجام گرفت. در این تحقیق، سایر مقیاس‌های Benchmarking برای شبکه‌های آبیاری در استان‌های مورد نظر به‌کار رفت. لازم به ذکر است که باید برخی از اجزای این روش را بهبهان کنیم. این روش به همراه روش‌های عادی و غیر معمولی است و باید شبکه‌ها ارزش‌گذاری و پس از آن مقایسه آنها نمایش داده شدند. جهت موفقیت شبکه‌های ارزیابی Benchmarking

مقدمه

Benchmarking یکی از روش‌های ارزیابی عملکرد شبکه‌های آبیاری است که از طرف مراجع بین‌المللی مدیریت منابع آب پیشنهاد و در بعضی از کشورها نیز از این نوع استفاده گردیده است. با هدف پیشرفت در شبکه‌ها و بهبود عملکرد و تعیین اهداف و تحقیق روی روش ارزیابی مقیاس‌های Benchmarking عده‌ای و گرافیکی است. ابتدا شبکه‌ها ارزش‌های گذاری و پس از آن مقایسه آنها نمایش داده شدند. جهت موفقیت شبکه‌های ارزیابی Benchmarking در پنج دیدگاه مدیریت و اجتماعی، فناوری، زیست‌محیطی و شبکه‌های ارزیابی به روش Benchmarking در مراحل مختلف اجرای سطح شبکه‌های استان ساسانیان، جنوب غربی ایران، استان آذربایجان شرقی و استان تهران انجام گرفت. در این تحقیق، سایر مقیاس‌های Benchmarking برای شبکه‌های آبیاری در استان‌های مورد نظر به‌کار رفت. لازم به ذکر است که باید برخی از اجزای این روش را بهبهان کنیم. این روش به همراه روش‌های عادی و غیر معمولی است و باید شبکه‌ها ارزش‌گذاری و پس از آن مقایسه آنها نمایش داده شدند. جهت موفقیت شبکه‌های ارزیابی Benchmarking

واژه‌کلیدی

Benchmarking: ارزیابی عملکرد، تحلیل سلسله مراتبی، روش مقیاس‌های Benchmarking، شبکه آبیاری، مقیاس‌های زوجی
مقدمه

مفهوم و ایده ارزیابی مقایسه‌ای (Benchmarking) با معنی تجاری و صنعتی جدید آن در دهه ۱۹۷۰ به میان امید شده است. در آن زمان، شرکت‌های زیادی با تصفیه سهمی از بارز شرکت‌های آمریکایی با اجرای ارزیابی مقایسه‌ای توانستند مسئولیت قابل قبولی و اقتصادی باقی بمانند و با استفاده از نتایج ارزیابی مستمر عملکرد خود به تأسیس استراتژی پردازش و (Benchmark) با اقتباس از بهترین شیوه‌های مقایسه‌ای و شاخص قرار دادن دیگر سازمان‌ها عملکرد خود را ارتقا دهد.

(Alexander & Potter, 2000)

بانک جهانی برای ارتقای کیفیت پروژه‌های آبیاری و زهکشی، سازمان‌ها را برای پذیرش و تغییر شکل بنیادی عملکرد این شیوه‌ها ایجاد کرد. یکی از اهداف این سازمان، جستجوی راهکارهای بهبود عملکرد سیستم‌های آبیاری و زهکشی از طریق مقایسه نتایج عملکرد پروژه‌های مختلف بوده است که "Benchmarking" یا روش ارزیابی مقایسه‌ای نام گرفته (Ghaheri, 2002). در این نوع ارزیابی، مقایسه معیاری در داخل سیستم صورت می‌گیرد و وضعیت موجود را گسترش با اهداف مورد انتظار در آینده مقایسه کند و باید خارج از سیستم با عملکرد تشکیل‌های متغیر انجام شود. (Ghaheri et al., 2004)

ارزیابی مقایسه‌ای (Benchmarking) با هدف رسیدن به بهترین آب‌داری و زهکشی (IPTRID با هماهنگی IÆICID, IWMI, WB, FAO با برگزاری کارگاه‌های در اکوست ۲۰۰۰ در آن افزایش کارگاه درباره اصول و موضوعات ارزیابی مقایسه‌ای گفته و به‌پرداخته براهای آن انتخاب و مبتنی شده، از طرف مقرر شده که جهت اجرای و انتشار اخبار مهم، جلسه‌ها و کارگاه‌های به‌صورت سالانه در کشورهای مختلف برگزار شود. (Malano & Burton, 2001)

1- Institutional Reform in Irrigation and Drainage Performance
2- International Programme for Technology and Research in Irrigation and Drainage
3- World Bank
4- International Water Management Institute
5- International Committee on Irrigation and Drainage
6- Food and Agriculture Organization
7- International Executive Council
8- Australian National Committee on Irrigation and Drainage
ارزیابی شیکه‌های ابزاری به‌روش Benchmarking

برای نخستین بار در شیکه‌های ابزاری و مقایسه دو شیکه برمودون و دینور به‌صورت غیر‌گرافیکی جهت حل مشکلات این شیکه‌های Benchmarking افت آت. نیز، که در آن تحلیل مقایسه‌ای به‌صورت عده‌ای انجام می‌پذیرد، با روش‌های معمول گرافیک قبیل ارائه‌سنج ایستادگی مطابق با شرایط واقعی مدیریت موجود شیکه‌های ابزاری و تأثیر ضرایب اهمیت نسبی شاخص‌های در مقایسه‌ی عملکرده است. این تفاوت باعث ارتفاع سطح روش بکار رفته، نسبت به روش‌های معمول، شده است. نتایج قابل حصول ارزیابی با این روش، مشخص شد نکات ضریب عملکرده نسبت به سطح استاندارد و اصولی نباید نقاط ناپذیر پدیداری داشته باشد.

(Malano et al., 2003). مراحل ارزیابی مقایسه‌ای طبق شکل 1 اجرا می‌شوند:
سر پیام مهم در روش ارزیابی مقایسه‌ای، شناسایی و برنامه‌ریزی کار است. این مرحله در حد بسیار بالایی موثر در ارزیابی مقایسه‌ای تأثیر می‌گذارد، منجر به تعیین می‌شود. مهم‌ترین مدل مناسب کدامیک شهیدانی آبیاری و زهکشی، منطقه تحت پوشش و تطبیق ناحیه‌ای است که در آن قرار گرفته‌اند. برای این که مقایسه دو پروره منطقی باشد باید آن دو و وضعیت مشابه منطقه‌ای قرار گرفته باشد.

برای بیانه‌نگرها، مشابه منطقه‌ای سفر به‌های طبقه‌بندی مشخصات شهیدانی که در روش ارزیابی مقایسه‌ای به کار می‌روند استفاده شده است و این سرفصل‌ها عبارت‌اند از:

روش کنترل آب، نوع مدیر، روش تخصصی آب و توزیع آب، آب و هوایی، نوع محصول اصلی، غلاب در منطقه، میزان و فقر آب، منابع آب‌های سطحی و زیرزمینی، وضعیت اجتماعی-اقتصادی، برگزاری و کودکی شهید و محل شکایت از نظر قرارایی (2002).

جهت شناسایی شهیدانی پس از مصاحبه‌های گروهی کارگزاران و کمیسیون اطلاعات اولیه از شهیدانی به‌هم‌بودنی، شده تحت نظر و جایگزین آب، این منطقه‌ای غرب، با توجه به مشخصات شهیدانی (در روش ارزیابی)، شناسایی اصلی طبقه‌بندی شکایت‌ها، وضعیت اجتماعی و فرهنگی مردم منطقه مورد توجه، و اهمیت و وجود مشکلات در ناحیه‌ها، دو شکایت به‌زبان‌های مشابه که تحت پوشش بند نازلیان است شکایت آبیاری و زهکشی، جحمله‌های مثبت انتخاب شدن که خصوصیات آنها از این قرار است.

شکایت آبیاری بریمودن

شکایت آبیاری بریمودن در شمال شاهرخ سر بیل ذهاب.
انتخاب شاخص‌های ارزیابی
برای انتخاب شاخص‌های ارزیابی، ابتدا تمام شاخص‌های موج‌بندی در منابع مختلف و در سده‌های مختلف (Badzahr, 2000; Anon, 2003; Ghaheri, 2000; Ghaheri, 1998; Ghaheri, 2002; Malano, 2001, Burton, 2001) دیدگاه‌های ارزیابی دسته‌بندی شدند. در این مرحله مشخص شد که به اطلاعات لازم است تا چگونه جمع‌آوری می‌شوند. در این اثر نیز از ارزیابی‌های مشخص شد. برای انتخاب گزینه شاخص‌های مناسب، شاخص‌های اداری و شاخص‌هایی که باید با تدوین بررسی نامه جمع‌آوری شود برندام بریزید شد.

مربوطه دور: جمع‌آوری اطلاعات
پس از انتخاب شاخص‌ها و تعیین شاخص‌ها به روش

جدول 1 - دیدگاه مدیریت

<table>
<thead>
<tr>
<th>پارامتر دوم (مخرج)</th>
<th>پارامتر اول (صورت)</th>
<th>رنگ</th>
<th>رنگ</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. طول دوره مورد نظر برای تحول (روز)</td>
<td>2. انگکی به دوم آب</td>
<td>3. ساخت ساختمان کالال</td>
<td>4. نسبت مساحت مورد تکمیلی</td>
<td>5. نسبت تعداد پرسنل</td>
</tr>
<tr>
<td>6. تعداد مسافت الات مورد نیاز</td>
<td>7. نسبت پرسنل</td>
<td>8. شاخص تعداد کارکنان توزیع آب در طول کالال ها (کیلوالت)</td>
<td>9. نسبت پرسنل (سفر به هزار هکتار)</td>
<td>10. نسبت کیفیت پرسنل</td>
</tr>
<tr>
<td>11. نسبت پرسنل</td>
<td>12. نسبت کیفیت پرسنل</td>
<td>13. نسبت پرسنل (سفر به هزار هکتار)</td>
<td>14. تعداد کارکنان امور توزیع آب طول کالال ها (کیلوالت)</td>
<td>15. نسبت کیفیت پرسنل</td>
</tr>
<tr>
<td>16. نسبت پرسنل</td>
<td>17. نسبت کیفیت پرسنل</td>
<td>18. نسبت پرسنل (سفر به هزار هکتار)</td>
<td>19. تعداد کارکنان امور توزیع آب طول کالال ها (کیلوالت)</td>
<td>20. نسبت کیفیت پرسنل</td>
</tr>
</tbody>
</table>
جدول 1- دیدگاه فنی

<table>
<thead>
<tr>
<th>رنگ</th>
<th>شاخص</th>
<th>پارامتر دوم (مخرج)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>شاخص برای</td>
<td>متوسط بالارسانه در سال (میلی‌متر در سال)</td>
</tr>
<tr>
<td>2</td>
<td>شاخص ECi</td>
<td>ECi میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>3</td>
<td>میزان آب‌پردازی</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>4</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>5</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>6</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>7</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>8</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>9</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
<tr>
<td>10</td>
<td>نسبت مصرف</td>
<td>در میکرو مسدر سانتی‌متر</td>
</tr>
</tbody>
</table>

جدول 2- دیدگاه حاصل بخشی کشاورزی و اقتصادی- اجتماعی

<table>
<thead>
<tr>
<th>رنگ</th>
<th>شاخص</th>
<th>پارامتر دوم (مخرج)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>شاخص میانگین کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>2</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>3</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>4</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>5</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>6</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>7</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>8</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
<tr>
<td>9</td>
<td>شاخص کشاورز</td>
<td>متوسط تولید در هکتار در ایران (تن در هکتار)</td>
</tr>
</tbody>
</table>

مصدر: جدی شهیدی، اجرا و نگهداری
جدول ۴- دیدگاه مالی

<table>
<thead>
<tr>
<th>پارامتر دوم (موجود)</th>
<th>پارامتر اول (صورت)</th>
<th>شاخص</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>هزینه کل مدیریت، اجراء و تکنیک‌های</td>
<td>نسبت برگ کهنه</td>
<td>قهوه</td>
<td>۱</td>
</tr>
<tr>
<td>سطح اراضی تحت کشت با سرویس داده شده (هکتار)</td>
<td>فعال بودن سیستم</td>
<td>قهوه</td>
<td>۲</td>
</tr>
<tr>
<td>جمع کل قبیل صادره (ریال)</td>
<td>عملکرد جمع‌آوری ابیپا و درآمدها</td>
<td>سبز</td>
<td>۳</td>
</tr>
<tr>
<td>جمع هزینه آب اب ابزاری برای کارکردها (ریال)</td>
<td>هزینه نسبی اب</td>
<td>قهوه</td>
<td>۴</td>
</tr>
<tr>
<td>حجم کل اب تحویل‌شده در طول سال (مترمکعب)</td>
<td>مجموع درآمد‌های ناخالص جمع‌آوری شده (ریال)</td>
<td>قهوه</td>
<td>۵</td>
</tr>
</tbody>
</table>

جدول ۵- دیدگاه زیست محیطی

<table>
<thead>
<tr>
<th>پارامتر دوم (موجود)</th>
<th>پارامتر اول (صورت)</th>
<th>شاخص</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>غلظت نمک آب روودی به پروژه</td>
<td>نسبت افزایش شوری (تولید نمک آب و برق)</td>
<td>سبز</td>
<td>۱</td>
</tr>
<tr>
<td>(مادرنیومس بر سانتی‌متر)</td>
<td>مقدار میزان نمک آب و برق</td>
<td>سبز</td>
<td>۲</td>
</tr>
<tr>
<td>مجاه خاک</td>
<td>تغییرات نسبی شوری خاک</td>
<td>سبز</td>
<td>۳</td>
</tr>
<tr>
<td>شوری کننده خاک</td>
<td>متوسط عمق آب زیرزمینی</td>
<td>سبز</td>
<td>۴</td>
</tr>
<tr>
<td>(مادرنیومس بر سانتی‌متر)</td>
<td>تغییرات نسبی عمق آب زیرزمینی</td>
<td>سبز</td>
<td>۵</td>
</tr>
<tr>
<td>عمق انتقال زرد</td>
<td>افزایش شوری آب زیرزمینی</td>
<td>سبز</td>
<td>۶</td>
</tr>
<tr>
<td>عمق انتقال زرد</td>
<td>نسبت اراضی غیر زردار در محدوده شیکه</td>
<td>سبز</td>
<td>۷</td>
</tr>
<tr>
<td>عمق قطبی - عمق قطبی (دوره پنج ساله)</td>
<td>مساحت اراضی زرد - مساحت کل اراضی (هکتار)</td>
<td>سبز</td>
<td>۸</td>
</tr>
</tbody>
</table>

ارزیابی با شیکه‌های ابزاری بر روی نمود، در اوایل استانداردی که شیکه با آن مقایسه خودآموزی شده، تشخیص داده می‌شود و پس از تجزیه و تحلیل نتایج زیر به‌دست می‌آید:

۱- فاصله عملکرد شیکه با سطح استاندارد
۲- دلیل فاصله عملکرد در شیکه
۳- فعالیت مورد نیاز به کردن این فاصله
برای تعیین سطوح استاندارد از نظر کارکردها، ارزیابی مقایسه‌ای به چهار سطح طبقه‌بندی شده است (Miller, 1992).

مرحله سوم: تجزیه و تحلیل

یکی از اقدامات مهم در تحلیل داده‌ها اعمال ضریب و نسبت داده‌های جمع‌آوری‌شده به‌زودی شاخص‌های مورد نیاز عملکرد است. در برخی موارد سازمان‌های مهم شغل ممکن است برای بررسی و آنالیز روند تغییرات بین خود عکاً خصوصی به تحلیل پیش‌تر اطلاعات و داده‌ها از طریق بیشتر کارگری روش‌های آماری باشند (Anon, 2005). در مرحله تجزیه و تحلیل، فاصله بین عملکرد شیکه مورد

77
شکل 2- طبقه‌بندی ارزیابی مقایسه‌ای از نظر کارکرد

در شکل ۲، کارکرد تولیدی عبارت است از وضعیت عملکرد جاری شبکه‌ها و کارکرد وظیفه‌ای سطحی از عملکرد است که شبکه باید در آن حضور داشته باشد. بهترین عملکرد بستگی به کارکرد وظیفه‌ای دارد که از نظر مدیریتی آن را به همراه عملکرد برساند و مرز کاراپی حداکثر کارکرد وظیفه‌ای است که هدف نهایی سازمان را برای رسیدن به آن مشخص می‌کند (Schütz et al., 1998).

در روش‌های معمول ارزیابی مقایسه‌ای، تحلیل مقایسه‌ای بین شبکه‌ها به صورت گرافیکی انجام می‌شود و از نقاط قوت شاخص‌های برتر بپرهیزد به سایر شبکه‌ها استفاده می‌شود; سطح استاندارد به صورت کمی مشخص نمی‌شود و اهمیت عددی شاخص‌ها در نظر گرفته نمی‌شود. در این تحقیق با تحلیل مقایسه‌ای کمی سطح استاندارد یا سطح شاخص‌ها به صورت رقم مشخص است و با توجه به BM شکل ۲ سطح استاندارد معادل کارکرد وظیفه‌ای و وضعیت موجود شبکه‌ها در سطح کارکرد تولیدی است. تغییرات بهبود نیز از کارکرد تولیدی به کارکرد وظیفه‌ای به صورت پله‌ای است.

در این مطالعه، پس از جمع‌آوری اطلاعات و دسته‌بندی

مطالعه‌الخصوصی شد (Ghaheri et al., 2000).
ازبینی شبکه‌های ایبایری به‌روش Benchmarking

که باعث تحریم تغییرات مطلوب می‌شود. این مرحله که دست اندک‌ترین خود را به‌دست می‌دهد و مستقیماً باعث تغییرات در سازمان شوند سپاس مشکل است. برنامه BM در این مرحله ممکن است با مشکل مواجه شود و به‌دلیل پیچیدگی این تغییرات و درگیری‌ها آن را به‌حال مراحل اقدامات و عملیات با این ارزیابی و سازمان‌های مربوط است. کمیته ملی ایبایری و زهکشی ایران با همکاری وزارت نیرو در صورت اجرای برنامه BM در کشور بر روی شبکه‌های ایبایری و زهکشی می‌توانند سازمان‌های مؤثری در بهبود وضعیت عملکرد شبکه‌ها باشند.

مرحله ششم: باشی و ارزیابی

اندازه‌گیری مقدار عملکرد سازمان‌ها، به سوی اهداف نرم‌ال و استاندارد ثابت در طول مراحل تغییر و تحلیل و جمع‌بندی بهمراه موقعیت ارزیابی مقایسه‌ای ضروری است. این اهداف و استانداردها در طول زمان تغییر می‌یابند و بی‌پرو تمدید وجود مناسب است. برای این که بهترین عملکرد و عملکرد نسبی حفظ شود باید از این بازی‌بینی ضروري است (Malano et al., 2003). بازی‌بینی‌های دوره‌ای برنامه برای ایجاد اطلاعات از اینکه برنامه برای مشترکین- باعث اطمینان‌آوری می‌شود. منحنی است این نیاز احساس شود که شناختی جدید ارزیابی عملکرد به لیست شناخت‌ها افزوده شود از جمله موضوعی جدیدی در برنامه ایبایری و زهکشی انگیزای ابتدای (2002).

نتایج و بحث

پس از جمع‌آوری شناخت‌ها و دسته‌بندی آنها در قالب دیگر‌های ارزیابی، مقایسه‌ها ارزیابی‌ها و پارامتر‌های آنها در شبکه‌های مورد مطالعه محسوب و در جدول‌های ۱ تا ۱۰ در ستون‌های جداگانه از تهیه شده است. پارامتر اول مربوط به مقدار صورت و پارامتر دوم مربوط به مقدار مخرج کسر در که در آن، X_i مقدار عملکرد شاخص در دیدگاه i در ضریب w_i تغییرات در دیدگاه i مقدار عملکرد دیدگاه i مقدار عملکرد شبکه، X مقدار شاخص از دیدگاه i در دیدگاه i است.

مرحله چهارم: جمع‌بندی

برنامه اجرای شده و رشدیافت از مرحله تجزیه و تحلیل باعث می‌گردد سازمان‌های روش و به‌صورت روش و برنامه‌های مناسب و قابل استفاده جهت بهبود عملکرد در این موجemed روش‌های مطابق و تعیین‌های مطلوب در سازمان‌ها شوند. اولویت‌هایی دیدگاه‌ها و شاخص‌ها برای بهبود از جمله کارهایی است که در مرحله جمع‌بندی اجرا می‌شود و در اختبار محرز قرار می‌گیرد. اولویت‌هایی دیدگاه‌ها دو عامل اساسی در نظر گرفته می‌شود: BM

1. مقدار بنیلی بهبود دیدگاه نسبت به سطح

2. ضریب اهمیت نسبی دیدگاه

در این مرحله پرس از تأثیر ضریب اهمیت نسبی و محاسبه عملکرد‌های دیدگاه‌ها و پارامترهای بهبود، دیدگاه‌ها برای بهبود عملکرد اولویت‌بندی شدهان. در داخل دیدگاه‌ها نیز در سطح و سیستم‌ها، اولویت بهبود شاخص‌ها شخصی می‌شود و جهت عملی کردن اقدامات در اختیار سازمان‌ها اجرا می‌گردد.

مرحله پنجم: اقدامات و عملیات

اقدامات و عملیات؛ یکی دیگر از فرآیندهای جدید است

$$ X_i = \sum_{j=1}^{n} w_j x_j \quad \Rightarrow \quad X = \sum_{i=1}^{n} w_i \sum_{j=1}^{n} w_j x_{ij} $$
جهت بررسی مقدار شاخص نیز از تقسیم مقادیر ضرایب اهمیت این شاخص‌ها در هر دیدگاه تبعیض شده و بعد از برای تعیین سطح استاندارد مقدار شاخص‌های برتر در شیوه‌ها به عنوان شاخص‌ها انتخاب شدند و برای عدد یک پاییز ۱۰۰ درصد قرار گرفتند. نسبت مقدار شاخص‌ها به شاخص BM

جدول ۶ – مقادیر شاخص‌ها و پارامترهای آن در شیکه‌های ابزاری برombo و دیگته در دیدگاه مدیریتی

<table>
<thead>
<tr>
<th>شیکه دینور</th>
<th>شیکه بریموند</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر دوم</td>
<td>پارامتر دوم</td>
</tr>
<tr>
<td>مقدار (یادداشت)</td>
<td>مقدار (یادداشت)</td>
</tr>
<tr>
<td>شاخص</td>
<td>شاخص</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شاخص</th>
<th>نسبت تعداد بررسی</th>
<th>نسبت گذشته بررسی</th>
<th>نسبت شاخص ندارهای برتر</th>
<th>نسبت دسترسی کالالها</th>
</tr>
</thead>
<tbody>
<tr>
<td>رندامن انتقال</td>
<td>1</td>
<td>12/09</td>
<td>17/01</td>
<td>7/02</td>
</tr>
<tr>
<td>رندامن توزیع</td>
<td>2</td>
<td>13/13</td>
<td>10/07</td>
<td>9/09</td>
</tr>
<tr>
<td>انتکای به دوام آب</td>
<td>3</td>
<td>15/14</td>
<td>15/15</td>
<td>15/15</td>
</tr>
<tr>
<td>نسبت مداخله مورد تغییر</td>
<td>4</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>نسبت تعداد بررسی</td>
<td>5</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>نسبت گذشته بررسی</td>
<td>6</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>نسبت شاخص ندارهای برتر</td>
<td>7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>نسبت دسترسی کالالها</td>
<td>8</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شاخص ندارهای برتر</td>
<td>9</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>در طول کالال</td>
<td>10</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>توزیع آب از لحاظ دقیقه</td>
<td>11</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>شاخص بهره‌وری لاپوری کالالها</td>
<td>12</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

شیکه‌های ابزاری برombo و BM

شیکه‌ها در شیکه‌ها هستند.
جدول 7- مقادیر شاخص‌ها و پارامترهای آن در شبکه‌های اپاری برموند و دینور در دیدگاه فنی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>شاخص ارزیابی</th>
<th>پارامتر اول</th>
<th>پارامتر دوم</th>
<th>مقدار</th>
<th>شبکه برموند</th>
<th>شبکه دینور</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>شاخص بارش</td>
<td>1670</td>
<td>346</td>
<td>260</td>
<td>3 1/2</td>
<td>5/4 1/2</td>
</tr>
<tr>
<td>2</td>
<td>شاخص قابل قبول</td>
<td>363</td>
<td>153</td>
<td>4 1/4</td>
<td>37 1/4</td>
<td>37 1/4</td>
</tr>
<tr>
<td>3</td>
<td>دم در واحد سطح</td>
<td>321</td>
<td>127</td>
<td>923/4</td>
<td>1/2 1/2</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>4</td>
<td>شاخص ظرفیت کنال اصلی</td>
<td>550</td>
<td>1260</td>
<td>1200</td>
<td>1/4 1/4</td>
<td>1/4 1/4</td>
</tr>
<tr>
<td>5</td>
<td>نسبت دم معبر</td>
<td>81</td>
<td>8 1/2</td>
<td>81/2</td>
<td>1/2 1/2</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>6</td>
<td>نسبت تعداد سازه در سیستم انتقال</td>
<td>139</td>
<td>228</td>
<td>164/2</td>
<td>1/4 1/4</td>
<td>1/4 1/4</td>
</tr>
<tr>
<td>7</td>
<td>تأثیر سازه‌های تعبیه شده</td>
<td>228</td>
<td>153</td>
<td>228</td>
<td>1/2 1/2</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>8</td>
<td>نسبت عملکرد سازه‌های کنترل</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>نسبت کنترل کننده‌ها به اشعابها</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>1/2 1/2</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>10</td>
<td>ایمنی کنال‌ها از سیلاب</td>
<td>14</td>
<td>37</td>
<td>14/3</td>
<td>1/2 1/2</td>
<td>1/2 1/2</td>
</tr>
</tbody>
</table>

جدول 8- مقادیر شاخص‌ها و پارامترهای آن در شبکه‌های اپاری برموند و دینور در دیدگاه حاصل بخشی کشاورزی و...

<table>
<thead>
<tr>
<th>شاخص</th>
<th>شاخص ارزیابی</th>
<th>پارامتر اول</th>
<th>پارامتر دوم</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>شاخص مهارت کشاورز</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>مشترکت آب بران</td>
<td>114</td>
<td>124</td>
<td>547</td>
</tr>
<tr>
<td>3</td>
<td>شاخص کنایت مالی کشاورز</td>
<td>124</td>
<td>123</td>
<td>1/123</td>
</tr>
<tr>
<td>4</td>
<td>راندمان تولید شبکه</td>
<td>6,5</td>
<td>6</td>
<td>245</td>
</tr>
<tr>
<td>5</td>
<td>عملکرد اچ‌دی استاندارد</td>
<td>6</td>
<td>6</td>
<td>420</td>
</tr>
<tr>
<td>6</td>
<td>درآمد به ارزای</td>
<td>14090000</td>
<td>14090000</td>
<td>1/14090000</td>
</tr>
<tr>
<td>7</td>
<td>واحد سطح اراضی در آمد به ارزای واحد</td>
<td>540</td>
<td>540</td>
<td>37500</td>
</tr>
<tr>
<td>8</td>
<td>نسبت تولید اراضی آب به دم</td>
<td>1/14090000</td>
<td>1/14090000</td>
<td>1/14090000</td>
</tr>
<tr>
<td>9</td>
<td>ایمنی یادی درجه‌ها</td>
<td>31</td>
<td>31</td>
<td>12</td>
</tr>
</tbody>
</table>
جدول 9 - مقادیر شاخص‌ها و پارامترهای آن در شبکه‌های ابزاری بریموند و دیگر در دیدگاه مالی

<table>
<thead>
<tr>
<th>شاخص دینور</th>
<th>شاخص ارزیابی</th>
<th>گ. ع.</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر اول</td>
<td>پارامتر دوم</td>
<td>مقدار شاخص</td>
</tr>
<tr>
<td>نسبت برق تزیینه (میلیون ریال)</td>
<td>34760/34972</td>
<td>2456/0/32</td>
</tr>
<tr>
<td>عملکرد جمع اوری ابزار و درآمدها</td>
<td>3531/3542</td>
<td>321/3120</td>
</tr>
<tr>
<td>هزینه نسبی آب</td>
<td>312300</td>
<td>2585/2560</td>
</tr>
<tr>
<td>در امید به ازای واحد آب ابزاری</td>
<td>3010/32427</td>
<td>912/916</td>
</tr>
</tbody>
</table>

جدول 10 - مقادیر شاخص‌ها و پارامترهای آن در شبکه‌های ابزاری بریموند و دیگر در دیدگاه زیست محیطی

<table>
<thead>
<tr>
<th>شاخص دینور</th>
<th>شاخص ارزیابی</th>
<th>گ. ع.</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر اول</td>
<td>پارامتر دوم</td>
<td>مقدار شاخص</td>
</tr>
<tr>
<td>نسبت افزایش شوری (نوازنده)</td>
<td>34760/34972</td>
<td>2456/0/32</td>
</tr>
<tr>
<td>مقدار مجاز افزایش ECE</td>
<td>3531/3542</td>
<td>321/3120</td>
</tr>
<tr>
<td>تغییرات نسبی شوری خاک</td>
<td>312300</td>
<td>2585/2560</td>
</tr>
<tr>
<td>متوسط عمق آب زیرزمینی</td>
<td>3010/32427</td>
<td>912/916</td>
</tr>
</tbody>
</table>

82
ارزیابی شبکه‌های اپاریزی بروش Benchmarking

در جدول 11 مقدار عملکرد دیدگاه‌ها نسبت به سطح استاندارد، با توجه به این که سطح استاندارد منیا می‌باشد و برای 100 درصد یا یک است برای هر دیدگاه ارزیابی مقدار عملکرد عددی بین صفر و یک خواهد بود. جهت بهبود سطح عملکرد مقدار عملکرد شیب‌ها، از معادله 1 استفاده شده است.

جدول 11- نتایج کلی ارزیابی شبکه‌های اپاریزی و مقدار عملکرد دیدگاه‌ها و شیب‌ها

<table>
<thead>
<tr>
<th>مقدار عملکرد دیدگاه‌دار شبکه</th>
<th>ضریب وزنی (W)</th>
<th>مقدار عملکرد نسبی دیدگاه‌ها در شبکه</th>
<th>رنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شبکه بریموند 1</td>
<td>0.410</td>
<td>0.412</td>
<td>0.414</td>
</tr>
<tr>
<td>شبکه دیپور</td>
<td>0.418</td>
<td>0.420</td>
<td>0.422</td>
</tr>
<tr>
<td>شبکه براون</td>
<td>0.426</td>
<td>0.428</td>
<td>0.430</td>
</tr>
</tbody>
</table>

تأثیر ضریب وزنی در مقدار پتانسیل بهبود دیدگاه، مقدار پتانسیل بهبود دیدگاه در شبکه بدست می‌آید.

جدول 12- پتانسیل بهبود عملکرد دیدگاه‌ها در شبکه‌های اپاریزی

<table>
<thead>
<tr>
<th>پتانسیل بهبود نسبی عملکرد دیدگاه‌ها در شبکه</th>
<th>ضریب وزنی (W)</th>
<th>مقدار عملکرد دیدگاه</th>
<th>رنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شبکه بریموند 1</td>
<td>0.219</td>
<td>0.244</td>
<td>0.266</td>
</tr>
<tr>
<td>شبکه دیپور</td>
<td>0.231</td>
<td>0.253</td>
<td>0.275</td>
</tr>
<tr>
<td>شبکه براون</td>
<td>0.299</td>
<td>0.323</td>
<td>0.347</td>
</tr>
</tbody>
</table>

۸۳
نتایج به گیری

نتایج حاصل از ارزیابی شبکه‌های آبیاری برمودون و دیموندر

در قالب پنج دیدگاه ارائه شده در جدول 11 مقدار عملکرد ویژه تاشی شده به‌کارآمدی شده است. در دیدگاه مالی، با مقایسه دو شبکه، عملکردهای احتمال ضعف مالی در شرکت برمودون، فقدان همکاری مدیریت و تجهیزات کشاورزی با امروز آب‌ماندن هزینه داده می‌شود. این اثر در شرکت دیموندر نیز مشاهده شده است، بنابراین نتایج عملکرد دیدگاه‌ها، شبکه دیموندر از نظر فنی، حاصل به‌کارآمدی کشاورزی و اجتماعی-اجتماعی، و مالی بر شبکه برمودون برتری دارد. اختلاف پایین عملکرد دیدگاه مدیریتی در دو شبکه و اختصاص پایین کمترین ضریب وزنی اهمیت به دیدگاه زیرساختی (0/437) باعث می‌شود که در این دیدگاه‌ها پس از اعمال ضرائب و زیستی مقدار عملکرد دو شبکه در یک سطح قرار گیرند. در دیدگاه‌ها جدول 12 محاسبات لازم جهت بهبود عملکرد دیدگاه‌ها بر اساس پتانسیل بهبود عملکرد پس از اعمال ضرائب و زنی در هر شبکه اجلاس رنگ اسباب است و در جدول 13 دیدگاه‌های دو شبکه پس از تأثیر ضرائب و زنی در پتانسیل بهبود آنها اولویت‌بندی شدند.

در دیدگاه‌ها طبق ضرایب اهمیت‌های نسبی آنها، مدیریتی، حاصل به‌کارآمدی کشاورزی و اجتماعی، مالی، و زیرساختی است. در شبکه برمودون اولویت‌بندی دیدگاه‌ها طبق جدول 13 مدیریتی، فنی، حاصل به‌کارآمدی کشاورزی و اجتماعی، مالی، و زیرساختی است که به‌پایین‌تری دیدگاه فنی بر این شبکه دیدگاه را از مکان سوم به مکان دوم در اولویت تغییر داده است.

جهت بهبود شبکه‌ها در سطح دیدگاه‌ها بر اساس ضریب

جدول 13-1- دلایل بهبود عملکرد در شبکه‌های آبیاری

<table>
<thead>
<tr>
<th>شرکت</th>
<th>دیدگاه</th>
<th>اولویت بهبود</th>
<th>برمودون</th>
<th>دیدگاه</th>
<th>اولویت بهبود</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدیریتی</td>
<td>1</td>
<td>0/279</td>
<td>1</td>
<td>0/279</td>
<td></td>
</tr>
<tr>
<td>حلول به‌کارآمدی و اجتماعی-اجتماعی</td>
<td>2</td>
<td>0/257</td>
<td>2</td>
<td>0/257</td>
<td></td>
</tr>
<tr>
<td>زیرساختی</td>
<td>3</td>
<td>0/277</td>
<td>3</td>
<td>0/277</td>
<td></td>
</tr>
<tr>
<td>مالی</td>
<td>4</td>
<td>0/123</td>
<td>4</td>
<td>0/123</td>
<td></td>
</tr>
<tr>
<td>زیرساختی محیطی</td>
<td>5</td>
<td>0/803</td>
<td>5</td>
<td>0/803</td>
<td></td>
</tr>
</tbody>
</table>

نرداختن به تعمیرات و بر طرف کردن آثار تخریبی ناشی از

جهت‌گیری در شبکه برمودون نیز از عوامل ضعف نسبی

ان است. در دیدگاه مالی، با مقایسه دو شبکه، عملکردها

ضعف مالی در شبکه برمودون، فقدان همکاری مدیریت و تجهیزات

کشاورزی با امروز آب‌ماندن به دلیل اعمال فشار از طریق

مراقبت خدمات کشاورزی و نیرو اهمیت فشار بر جمع‌آوری

مایه‌ساز است.

در جدول 12 محاسبات لازم جهت بهبود عملکرد

دیدگاه‌ها بر اساس پتانسیل بهبود عملکرد پس از اعمال

ضرائب و زنی در هر شبکه اجلاس رنگ اسباب است و در جدول 13

دیدگاه‌های دو شبکه پس از تأثیر ضرائب و زنی در پتانسیل

بهبود آنها اولویت‌بندی شدند.
ارزیابی شبکه‌های آبیاری در استان تهران

در این شیبکه، مقایسه تناسبهای بهره‌وری قبل از اعمال ضرایب در دیدگاه‌های فنی و مالی آنها در اولویت آخر بهره‌وری قرار داده است. در داخل دیدگاه نیز به‌عنوان ترتیبی شاخص‌های اساس تناسبی بهره‌وری و ضرایب اهمیت نسبی برای بهره‌وری عامل برای اولویت‌بندی می‌شوند.

به طور کلی، ارزیابی شبکه‌های آب‌یاری از انتخاب روش مذکور در بهره‌وری و ضرایب شاخص‌های آب‌یاری بسیار مؤثر باشد. هم‌اکنون به دلیل استاندارد نیاز به تغییر و هم‌اکنون ا الدمای اینها، نیازی برای اعمال کردن برای انتظار مورد با سازمان‌دهی شبکه‌ها و ارزیابی‌های مستمر سالانه در شیک‌های آب‌یاری مقدمات اجرای طرح فراهم شود.

قدردانی

از مساعدت‌های استادان و گروه‌های دریس اثری از طرفان دانشگاه تهران، شرکت آب منطقه‌ای غرب امور آب استان کرمانشاه، امور آب شهرستان سریل ذهاب، امور آب شهرستان دشتی، سازمان جهاد کشاورزی استان کرمانشاه و مدیریت جهاد کشاورزی شهرستان سریل ذهاب قدردانی می‌شود.

مراجع

Benchmarking

Functionality Assessment of Irrigation Networks by Using Benchmarking Method

J. Jalili, S. J. Jebellie, H. Ghamarnia, M. J. Monem

The functionality assessment of an irrigation network is an important step to find the shortages and the ways to improve the efficiency of irrigation networks. Recently the application of conventional benchmarking to irrigation and drainage networks has been suggested by International Water Management Institute (IWMI) and in some countries it has been implemented successfully. In conventional benchmarking method, some pre-determined indicators are measured and the values are presented in graphical format in order to be compared with each other. The indicators which carry the best values would be used to improve the functionality of other irrigation networks. In this study, numerical analysis approach has also been added to the conventional benchmarking method. In new benchmarking method in addition to the graphical comparison, the indicators are also valued and their amounts are normalized. For comparison purposes the selected indicators have been categorized in to: managerial, technical, agricultural productivity, financial and environmental groups. Two existing irrigation and drainage networks called Brimvand and Dinevar networks were selected in Kermanshah province in the west of Iran. The proposed benchmarking approach was used to evaluate the value of the selected indicators. The best measured value of indicators was tagged as a benchmark and standard level with allocated quantity of 1 or 100%. The pair wise comparison matrix using some experts’ viewpoints was applied and the inter-relation coefficient of indicators and views were determined using analytical hierarchy process method. The application of above mentioned approach to the Brimvand and Dinevar networks showed inter-relation coefficient values of 0.8708 and 0.9054, respectively. Similar comparison for management performance view point in Brimvand and Dinevar networks showed 0.9128 and 0.9074 values, for technical view point 0.7660 and 0.9731, for productivity efficiency 0.8607, 0.8728, for financial view point 0.8613 and 0.9276 and finally for environmental view point 0.8751 and 0.8187, respectively. Based on the analysis of the above mentioned values, the relative importance coefficients have been calculated in order to define the priority of performance improvement among the five category of indicators. Calculations showed that the orders of performance improvement priorities in Brimvand irrigation network are: management viewpoint with quantity of 0.0394, technical 0.0356, productive efficiency 0.0328, financial 0.0133 and environmental 0.008, respectively. Similar orders of performance improvement priorities for Dinar irrigation network are: the management viewpoint 0.0419, technical 0.0041, productive efficiency 0.0299, financial 0.0328 and environmental 0.008, respectively.

Key words: Analytic Hierarchy Process, Benchmarking, Irrigation Network, Pair Wise Comparison, Performance Assessment