Abdolmaleki, K., Alizadeh, L., & Nayebzadeh, K. (2019). Oleogel production based on binary and ternary mixtures of sodium caseinate , xanthan gum , and guar gum : Optimization of hydrocolloids concentration and drying method. July, 1–10. https://doi.org/10.1111/jtxs.12469
AK, M. M., & GUNASEKARAN, S. (1995). Measuring Elongational Properties of Mozzarella Cheese. Journal of Texture Studies, 26(2), 147–160. https://doi.org/10.1111/j.1745-4603.1995.tb00790.x
Authors, V. (1984). DigitalCommons @ USU Proceedings from the 21st Annual Marschall Invitational Cheese Seminar 1984.
Banville, V., Morin, P., Pouliot, Y., & Britten, M. (2013). Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions. Journal of Dairy Science, 96(8), 4804–4815. https://doi.org/10.3168/jds.2012-6314
Behera, B., Dey, S., Sharma, V., & Pal, K. (2015). Rheological and Viscoelastic Properties of Novel Sunflower Oil-Span 40-Biopolymer–Based Bigels and Their Role as a Functional Material in the Delivery of Antimicrobial Agents. 34(2), 1–10. https://doi.org/10.1002/adv.21488
Behera, Sagiri, S. S., Singh, V. K., Pal, K., & Anis, A. (2014). Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Standardization News, 66(9–10), 865–879. https://doi.org/10.1002/star.201400045
Bemer, H. (2021). Processing development for the production of low-fat oleogel cream cheese products. Nuevos Sistemas de Comunicación e Información, 2013–2015.
Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67–75. https://doi.org/10.1016/j.foodres.2016.04.016
Bi, W., Zhao, W., Li, D., Li, X., Yao, C., Zhu, Y., & Zhang, Y. (2016). Effect of Resistant Starch and Inulin on the Properties of Imitation Mozzarella Cheese. International Journal of Food Properties, 19(1), 159–171. https://doi.org/10.1080/10942912.2015.1013634
Bolandi, M., Pirani, S. , Pasha, R., Beik Mohammadi, M. (2014). Aroushe cheese: physicochemical, reological, organoleptic and microstructure properties. Iran Food Science and Industry. https://fsct.modares.ac.ir/rdsm_jarticle_list.php?sid=1&slc_lang=fa&jart_id=2014
Bollom, M. A., Clark, S., & Acevedo, N. C. (2020). Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocolloids, 101, 105570. https://doi.org/10.1016/j.foodhyd.2019.105570
Bunka, F., & Pavlínek., V. (2007). EFFECT OF 1-MONOGLYCERIDES ON VISCOELASTIC PROPERTIES OF PROCESSED CHEESE F . Bunka V . Pavlínek J . Hrab 9 , O . Rop , R . Janiš , and J . Krej 7 í. August 2006, 819–828. https://doi.org/10.1080/10942910601113756
Černíková, M., Buňka, F., Pospiech, M., Tremlová, B., Hladká, K., Pavlínek, V., & Březina, P. (2009). Replacement of traditional emulsifying salts by selected hydrocolloids in processed cheese production. 1997. https://doi.org//10.1016/j.idairyj.2009.12.012
Dai, S., Corke, H., & Shah, N. P. (2016). Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. Journal of Dairy Science, 99(9), 7063–7074. https://doi.org/10.3168/jds.2016-11131
Dai, S., Jiang, F., Corke, H., & Shah, N. P. (2018). Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 107, 691–699. https://doi.org/10.1016/j.foodres.2018.02.069
Dai, S., Jiang, F., Shah, N. P., & Corke, H. (2019). Functional and pizza bake properties of Mozzarella cheese made with konjac glucomannan as a fat replacer. Food Hydrocolloids, 92(800), 125–134. https://doi.org/10.1016/j.foodhyd.2019.01.045
Dimitreli, G., & Thomareis, A. S. (2007). Texture evaluation of block-type processed cheese as a function of chemical composition and in relation to its apparent viscosity. Journal of Food Engineering, 79(4), 1364–1373. https://doi.org/10.1016/j.jfoodeng.2006.04.043
Farahmandfar, R., Tehrani, M. M., Razavi, S. M. A., & Najafi, M. B. H. (2011). Effect of trisodium citrate concentration and soy cheese on meltability of pizza cheese. In International Journal of Food Properties (Vol. 14, Issue 4, pp. 697–707). https://doi.org/10.1080/10942910903367621
Felix da Silva, D., Barbosa de Souza Ferreira, S., Bruschi, M. L., Britten, M., & Matumoto-Pintro, P. T. (2016). Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low fat processed cheese. Food Hydrocolloids, 60, 308–316. https://doi.org/10.1016/j.foodhyd.2016.03.034
Giha, V., Ordoñez, M. J., & Villamil, R. A. (2021). How does milk fat replacement influence cheese analogue microstructure, rheology, and texture profile? Journal of Food Science, 86(7), 2802–2815. https://doi.org/10.1111/1750-3841.15799
Gulzar, N., Sameen, A., Rafiq, S., Huma, N., & Murtaza, M. S. (2020). Influence of mozzarella and cheddar cheese blending on baking performance , viscosity and microstructure of pizza cheese blends. 30(1), 212–218.
Hassanien, E. M. A. E.-W. and M. F. R. (2018). Chemical, rheological and sensory characteristics of processed cheese spread analogues. Carpathian journal of food science and technology.
Hennelly, P. J., Dunne, P. G., O’Sullivan, M., & O’Riordan, E. D. (2006). Textural, rheological and microstructural properties of imitation cheese containing inulin. In Journal of Food Engineering (Vol. 75, Issue 3, pp. 388–395). https://doi.org/10.1016/j.jfoodeng.2005.04.023
Huang, H., Hallinan, R., & Maleky, F. (2018). Comparison of different oleogels in processed cheese products formulation. International Journal of Food Science and Technology, 53(11), 2525–2534. https://doi.org/10.1111/ijfs.13846
Imm, J. Y., Oh, E. J., Han, K. S., Oh, S., Park, Y. W., & Kim, S. H. (2003). Functionality and Physico-Chemical Characteristics of Bovine and Caprine Mozzarella Cheeses During Refrigerated Storage. Journal of Dairy Science, 86(9), 2790–2798. https://doi.org/10.3168/jds.S0022-0302(03)73876-4
Lee, S. K., Klostermeyer, H., & Anema, S. G. (2015). Effect of fat and protein-in-water concentrations on the properties of model processed cheese. International Dairy Journal, 50, 15–23. https://doi.org/10.1016/j.idairyj.2015.06.001
Li, H., Liu, Y., Sun, Y., Li, H., & Yu, J. (2018). Properties of polysaccharides and glutamine transaminase used in mozzarella cheese as texturizer and crosslinking agents. LWT - Food Science and Technology. https://doi.org/10.1016/j.lwt.2018.10.011
Li, H., Yu, H., Liu, Y., Wang, Y., Li, H., & Yu, J. (2019). The use of of inulin, maltitol and lecithin as fat replacers and plasticizers in a model reduced-fat mozzarella cheese-like product. Journal of the Science of Food and Agriculture, 99(12), 5586–5593. https://doi.org/10.1002/jsfa.9835
Liu, H., Xu, X. M., & Guo, S. D. (2008). Comparison of full-fat and low-fat cheese analogues with or without pectin gel through microstructure, texture, rheology, thermal and sensory analysis. International Journal of Food Science and Technology, 43(9), 1581–1592. https://doi.org/10.1111/j.1365-2621.2007.01616.x
Ma, X., Balaban, M. O., Zhang, L., Emanuelsson-Patterson, E. A. C., & James, B. (2014). Quantification of pizza baking properties of different cheeses, and their correlation with cheese functionality. Journal of Food Science, 79(8), 1528–1534. https://doi.org/10.1111/1750-3841.12540
Macdougall, P. E., Ong, L., Palmer, M. V., & Gras, S. L. (2019). The microstructure and textural properties of Australian cream cheese with differing composition. International Dairy Journal, 99, 104548. https://doi.org/10.1016/j.idairyj.2019.104548
McCarthy, C. M., Wilkinson, M. G., Kelly, P. M., & Guinee, T. P. (2015). Effect of salt and fat reduction on the composition, lactose metabolism, water activity and microbiology of Cheddar cheese. Dairy Science and Technology, 95(5), 587–611. https://doi.org/10.1007/s13594-015-0245-2
Moghiseh, N., Arianfar, A., Salehi, E. A., & Rafe, A. (2021). Effect of inulin/kefiran mixture on the rheological and structural properties of mozzarella cheese. International Journal of Biological Macromolecules, 191(July), 1079–1086. https://doi.org/10.1016/j.ijbiomac.2021.09.154
Motevalizadeh, E. (2017). Optimization of physicochemical and textural properties of pizza cheese fortified with soybean oil and carrot extract (p. 17). https://doi.org/10.1002/sn3.563
Mounsey, J. S., & O’Riordan, E. D. (2001). Characteristics of Imitation Cheese. Journal of Food Science, 66(4), 586–591.
Naderi, M. , Farmani, J, R. (2017). Structured sunflower oil: the evaluation of Crystallization kinetic and microstructure. Iran Food Science and Industry. https://fsct.modares.ac.ir/rdsm_jarticle_list.php?sid=1&slc_lang=fa&jart_id=1390
Noshad, M., Hojjati, M., Hassanzadeh, M., Zadeh-Dabbagh, R., & Khani, M. H. (2022). Edible Utilization of Xanthan-guar Oleogels as a Shortening Replacement in Sponge Cake: Physicochemical Properties. Journal of Chemical Health Risks, 12(2), 255–264. https://doi.org/10.22034/jchr.2020.1908257.1169
Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58(8), 1330–1341. https://doi.org/10.1080/10408398.2016.1256866
Pere R. Ramel, A. G. M. P. (2018). Processed cheese as a polymer matrix composite: A particle toolkit for the replacement ofmilk fat with canola oil in processed cheese. Food Research International. https://doi.org//10.1016/j.foodres.2018.02.019
Ran Feng , Sylvain Barjon , Frans W.J. van den Berg , Søren Kristian Lillevang b, L. A. (2021). Effect of residence time in the cooker-stretcher on mozzarella cheese composition, structure and functionality. Journal of Food Engineering.
Rodríguez-hern, A. K. (2021). Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. 252(February 2020). https://doi.org/10.1016/j.carbpol.2020.117171
Samui, T., Goldenisky, D., Rosen-Kligvasser, J., & Davidovich-Pinhas, M. (2021). The development and characterization of novel in-situ bigel formulation. Food Hydrocolloids, 113, 106416. https://doi.org/10.1016/j.foodhyd.2020.106416
Sattar, M. U., Sameen, A., Huma, N., & Shahid, M. (2015). Exploit Fat Mimetic Potential of Different Hydrocolloids in Low Fat Mozzarella Cheese. 3(8), 518–525. https://doi.org/10.12691/jfnr-3-8-7
Shaikh, H. M., Anis, A., Poulose, A. M., Madhar, N. A., & Al-Zahrani, S. M. (2022). Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels, 8(6). https://doi.org/10.3390/gels8060330
Shariati, F., Azadmard-Damirchi, S., Shirani Rad, A. H. (2017). Oleogel production from canola oil with mixture of ethylcellulose and polyglycerol polyricinoleate. Iran Food Science and Industry. https://fsct.modares.ac.ir/rdsm_jarticle_list.php?sid=1&slc_lang=fa&jart_id=1332
Sheehan, J. J., & Guinee, T. P. (2004). Effect of pH and calcium level on the biochemical, textural and functional properties of reduced-fat Mozzarella cheese. In International Dairy Journal (Vol. 14, Issue 2, pp. 161–172). https://doi.org/10.1016/S0958-6946(03)00167-5
Singh, V. K., Banerjee, I., Agarwal, T., Pramanik, K., Bhattacharya, M. K., & Pal, K. (2014). Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 123, 582–592. https://doi.org/10.1016/j.colsurfb.2014.09.056
Sołowiej, B., Cheung, I. W. Y., & Li-Chan, E. C. Y. (2014). Texture, rheology and meltability of processed cheese analogues prepared using rennet or acid casein with or without added whey proteins. International Dairy Journal, 37(2), 87–94. https://doi.org/10.1016/j.idairyj.2014.03.003
Sołowiej, B., Glibowski, P., Muszyński, S., Wydrych, J., Gawron, A., & Jeliński, T. (2015). The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocolloids, 44(February 2015), 1–11. https://doi.org/10.1016/j.foodhyd.2014.08.022
Tunick, M. H. (1994). Effects of Homogenitation and Proteolysis on Free Oil in Mozzarella Cheese. Journal of Dairy Science, 77(9), 2487–2493. https://doi.org/10.3168/jds.S0022-0302(94)77190-3
Tunick, M. H., Mackey, K. L., Shieh, J. J., Smith, P. W., Cooke, P., & Malin, E. L. (1993). Rheology and microstructure of low-fat Mozzarella cheese. In International Dairy Journal (Vol. 3, Issue 7, pp. 649–662). https://doi.org/10.1016/0958-6946(93)90106-A
Zampouni, K., Mouzakitis, C. K., Lazaridou, A., Moschakis, T., & Katsanidis, E. (2023). Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocolloids, 140(November 2022), 108636. https://doi.org/10.1016/j.foodhyd.2023.108636
Zhao, W., Wei, Z., & Xue, C. (2022). Recent advances on food-grade oleogels: Fabrication, application and research trends. Critical Reviews in Food Science and Nutrition, 62(27), 7659–7676.
Zisu, B., & Shah, N. P. (2005). Textural and functional changes in low-fat Mozzarella cheeses in relation to proteolysis and microstructure as influenced by the use of fat replacers, pre-acidification and EPS starter. International Dairy Journal, 15(6–9), 957–972. https://doi.org/10.1016/j.idairyj.2004.09.014