Document Type : Research Paper

Authors

1 Ferdowsi University Mashhad

2 Ferdowsi University of Mashhad

10.22092/fooder.2025.365834.1393

Abstract

Solid fats play a crucial role in determining the quality and sensory attributes of food products. However, their use has raised health concerns due to their high content of saturated and trans fatty acids. Consequently, food manufacturers are seeking strategies to reduce fat content without compromising the final product quality. In this study, bigels composed of guar and xanthan gum-based hydrogels and soybean oil oleogels containing mono- and diglycerides were incorporated into processed pizza cheese formulations as cream substitutes at levels of 0%, 25%, 50%, 75%, and 100%. The physicochemical and functional properties of the cheese samples—including hardness, adhesiveness, rheological behavior, meltability, and stretchability—were evaluated. Results showed that increasing the level of bigel substitution led to a reduction in protein content, which in turn decreased hardness, elastic (G′) and viscous (G″) moduli, and increased adhesiveness compared to the control. The incorporation of bigel significantly improved the stretchability of the cheese samples. The 75% bigel-substituted sample demonstrated comparable hardness to the control, along with superior stretchability and lower oil release. Overall, the findings suggest that up to 75% of cream can be successfully replaced with bigels in processed pizza cheese formulations without negatively affecting key quality attributes.
 
 

Keywords

Main Subjects

Abdolmaleki, K., Alizadeh, L., & Nayebzadeh, K. (2019). Oleogel production based on binary and ternary mixtures of sodium caseinate , xanthan gum , and guar gum : Optimization of hydrocolloids concentration and drying method. July, 1–10. https://doi.org/10.1111/jtxs.12469
AK, M. M., & GUNASEKARAN, S. (1995). Measuring Elongational Properties of Mozzarella Cheese. Journal of Texture Studies, 26(2), 147–160. https://doi.org/10.1111/j.1745-4603.1995.tb00790.x
Authors, V. (1984). DigitalCommons @ USU Proceedings from the 21st Annual Marschall Invitational Cheese Seminar 1984.
Banville, V., Morin, P., Pouliot, Y., & Britten, M. (2013). Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions. Journal of Dairy Science, 96(8), 4804–4815. https://doi.org/10.3168/jds.2012-6314
Behera, B., Dey, S., Sharma, V., & Pal, K. (2015). Rheological and Viscoelastic Properties of Novel Sunflower Oil-Span 40-Biopolymer–Based Bigels and Their Role as a Functional Material in the Delivery of Antimicrobial Agents. 34(2), 1–10. https://doi.org/10.1002/adv.21488
Behera, Sagiri, S. S., Singh, V. K., Pal, K., & Anis, A. (2014). Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Standardization News, 66(9–10), 865–879. https://doi.org/10.1002/star.201400045
Bemer, H. (2021). Processing development for the production of low-fat oleogel cream cheese products. Nuevos Sistemas de Comunicación e Información, 2013–2015.
Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67–75. https://doi.org/10.1016/j.foodres.2016.04.016
Bi, W., Zhao, W., Li, D., Li, X., Yao, C., Zhu, Y., & Zhang, Y. (2016). Effect of Resistant Starch and Inulin on the Properties of Imitation Mozzarella Cheese. International Journal of Food Properties, 19(1), 159–171. https://doi.org/10.1080/10942912.2015.1013634
Bolandi, M., Pirani, S. , Pasha, R., Beik Mohammadi, M. (2014). Aroushe cheese: physicochemical, reological, organoleptic and microstructure properties. Iran Food Science and Industry. https://fsct.modares.ac.ir/rdsm_jarticle_list.php?sid=1&slc_lang=fa&jart_id=2014
Bollom, M. A., Clark, S., & Acevedo, N. C. (2020). Development and characterization of a novel soy lecithin-stearic acid and whey protein concentrate bigel system for potential edible applications. Food Hydrocolloids, 101, 105570. https://doi.org/10.1016/j.foodhyd.2019.105570
Bunka, F., & Pavlínek., V. (2007). EFFECT OF 1-MONOGLYCERIDES ON VISCOELASTIC PROPERTIES OF PROCESSED CHEESE F . Bunka V . Pavlínek J . Hrab 9 , O . Rop , R . Janiš , and J . Krej 7 í. August 2006, 819–828. https://doi.org/10.1080/10942910601113756
Černíková, M., Buňka, F., Pospiech, M., Tremlová, B., Hladká, K., Pavlínek, V., & Březina, P. (2009). Replacement of traditional emulsifying salts by selected hydrocolloids in processed cheese production. 1997. https://doi.org//10.1016/j.idairyj.2009.12.012
Dai, S., Corke, H., & Shah, N. P. (2016). Utilization of konjac glucomannan as a fat replacer in low-fat and skimmed yogurt. Journal of Dairy Science, 99(9), 7063–7074. https://doi.org/10.3168/jds.2016-11131
Dai, S., Jiang, F., Corke, H., & Shah, N. P. (2018). Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 107, 691–699. https://doi.org/10.1016/j.foodres.2018.02.069
Dai, S., Jiang, F., Shah, N. P., & Corke, H. (2019). Functional and pizza bake properties of Mozzarella cheese made with konjac glucomannan as a fat replacer. Food Hydrocolloids, 92(800), 125–134. https://doi.org/10.1016/j.foodhyd.2019.01.045
Dimitreli, G., & Thomareis, A. S. (2007). Texture evaluation of block-type processed cheese as a function of chemical composition and in relation to its apparent viscosity. Journal of Food Engineering, 79(4), 1364–1373. https://doi.org/10.1016/j.jfoodeng.2006.04.043
Farahmandfar, R., Tehrani, M. M., Razavi, S. M. A., & Najafi, M. B. H. (2011). Effect of trisodium citrate concentration and soy cheese on meltability of pizza cheese. In International Journal of Food Properties (Vol. 14, Issue 4, pp. 697–707). https://doi.org/10.1080/10942910903367621
Felix da Silva, D., Barbosa de Souza Ferreira, S., Bruschi, M. L., Britten, M., & Matumoto-Pintro, P. T. (2016). Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low fat processed cheese. Food Hydrocolloids, 60, 308–316. https://doi.org/10.1016/j.foodhyd.2016.03.034
Giha, V., Ordoñez, M. J., & Villamil, R. A. (2021). How does milk fat replacement influence cheese analogue microstructure, rheology, and texture profile? Journal of Food Science, 86(7), 2802–2815. https://doi.org/10.1111/1750-3841.15799
Gulzar, N., Sameen, A., Rafiq, S., Huma, N., & Murtaza, M. S. (2020). Influence of mozzarella and cheddar cheese blending on baking performance , viscosity and microstructure of pizza cheese blends. 30(1), 212–218.
Hassanien, E. M. A. E.-W. and M. F. R. (2018). Chemical, rheological and sensory characteristics of processed cheese spread analogues. Carpathian journal of food science and technology.
Hennelly, P. J., Dunne, P. G., O’Sullivan, M., & O’Riordan, E. D. (2006). Textural, rheological and microstructural properties of imitation cheese containing inulin. In Journal of Food Engineering (Vol. 75, Issue 3, pp. 388–395). https://doi.org/10.1016/j.jfoodeng.2005.04.023
Huang, H., Hallinan, R., & Maleky, F. (2018). Comparison of different oleogels in processed cheese products formulation. International Journal of Food Science and Technology, 53(11), 2525–2534. https://doi.org/10.1111/ijfs.13846
Imm, J. Y., Oh, E. J., Han, K. S., Oh, S., Park, Y. W., & Kim, S. H. (2003). Functionality and Physico-Chemical Characteristics of Bovine and Caprine Mozzarella Cheeses During Refrigerated Storage. Journal of Dairy Science, 86(9), 2790–2798. https://doi.org/10.3168/jds.S0022-0302(03)73876-4
Lee, S. K., Klostermeyer, H., & Anema, S. G. (2015). Effect of fat and protein-in-water concentrations on the properties of model processed cheese. International Dairy Journal, 50, 15–23. https://doi.org/10.1016/j.idairyj.2015.06.001
Li, H., Liu, Y., Sun, Y., Li, H., & Yu, J. (2018). Properties of polysaccharides and glutamine transaminase used in mozzarella cheese as texturizer and crosslinking agents. LWT - Food Science and Technology. https://doi.org/10.1016/j.lwt.2018.10.011
Li, H., Yu, H., Liu, Y., Wang, Y., Li, H., & Yu, J. (2019). The use of of inulin, maltitol and lecithin as fat replacers and plasticizers in a model reduced-fat mozzarella cheese-like product. Journal of the Science of Food and Agriculture, 99(12), 5586–5593. https://doi.org/10.1002/jsfa.9835
Liu, H., Xu, X. M., & Guo, S. D. (2008). Comparison of full-fat and low-fat cheese analogues with or without pectin gel through microstructure, texture, rheology, thermal and sensory analysis. International Journal of Food Science and Technology, 43(9), 1581–1592. https://doi.org/10.1111/j.1365-2621.2007.01616.x
Ma, X., Balaban, M. O., Zhang, L., Emanuelsson-Patterson, E. A. C., & James, B. (2014). Quantification of pizza baking properties of different cheeses, and their correlation with cheese functionality. Journal of Food Science, 79(8), 1528–1534. https://doi.org/10.1111/1750-3841.12540
Macdougall, P. E., Ong, L., Palmer, M. V., & Gras, S. L. (2019). The microstructure and textural properties of Australian cream cheese with differing composition. International Dairy Journal, 99, 104548. https://doi.org/10.1016/j.idairyj.2019.104548
McCarthy, C. M., Wilkinson, M. G., Kelly, P. M., & Guinee, T. P. (2015). Effect of salt and fat reduction on the composition, lactose metabolism, water activity and microbiology of Cheddar cheese. Dairy Science and Technology, 95(5), 587–611. https://doi.org/10.1007/s13594-015-0245-2
Moghiseh, N., Arianfar, A., Salehi, E. A., & Rafe, A. (2021). Effect of inulin/kefiran mixture on the rheological and structural properties of mozzarella cheese. International Journal of Biological Macromolecules, 191(July), 1079–1086. https://doi.org/10.1016/j.ijbiomac.2021.09.154
Motevalizadeh, E. (2017). Optimization of physicochemical and textural properties of pizza cheese fortified with soybean oil and carrot extract (p. 17). https://doi.org/10.1002/sn3.563
Mounsey, J. S., & O’Riordan, E. D. (2001). Characteristics of Imitation Cheese. Journal of Food Science, 66(4), 586–591.
Naderi, M. , Farmani, J, R. (2017). Structured sunflower oil: the evaluation of Crystallization kinetic and microstructure. Iran Food Science and Industry. https://fsct.modares.ac.ir/rdsm_jarticle_list.php?sid=1&slc_lang=fa&jart_id=1390
Noshad, M., Hojjati, M., Hassanzadeh, M., Zadeh-Dabbagh, R., & Khani, M. H. (2022). Edible Utilization of Xanthan-guar Oleogels as a Shortening Replacement in Sponge Cake: Physicochemical Properties. Journal of Chemical Health Risks, 12(2), 255–264. https://doi.org/10.22034/jchr.2020.1908257.1169
Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58(8), 1330–1341. https://doi.org/10.1080/10408398.2016.1256866
Pere R. Ramel, A. G. M. P. (2018). Processed cheese as a polymer matrix composite: A particle toolkit for the replacement ofmilk fat with canola oil in processed cheese. Food Research International. https://doi.org//10.1016/j.foodres.2018.02.019
Ran Feng , Sylvain Barjon , Frans W.J. van den Berg , Søren Kristian Lillevang b, L. A. (2021). Effect of residence time in the cooker-stretcher on mozzarella cheese composition, structure and functionality. Journal of Food Engineering.
Rodríguez-hern, A. K. (2021). Rheological properties of ethyl cellulose-monoglyceride-candelilla wax oleogel vis-a-vis edible shortenings. 252(February 2020). https://doi.org/10.1016/j.carbpol.2020.117171
Samui, T., Goldenisky, D., Rosen-Kligvasser, J., & Davidovich-Pinhas, M. (2021). The development and characterization of novel in-situ bigel formulation. Food Hydrocolloids, 113, 106416. https://doi.org/10.1016/j.foodhyd.2020.106416
Sattar, M. U., Sameen, A., Huma, N., & Shahid, M. (2015). Exploit Fat Mimetic Potential of Different Hydrocolloids in Low Fat Mozzarella Cheese. 3(8), 518–525. https://doi.org/10.12691/jfnr-3-8-7
Shaikh, H. M., Anis, A., Poulose, A. M., Madhar, N. A., & Al-Zahrani, S. M. (2022). Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels, 8(6). https://doi.org/10.3390/gels8060330
Shariati, F., Azadmard-Damirchi, S., Shirani Rad, A. H. (2017). Oleogel production from canola oil with mixture of ethylcellulose and polyglycerol polyricinoleate. Iran Food Science and Industry. https://fsct.modares.ac.ir/rdsm_jarticle_list.php?sid=1&slc_lang=fa&jart_id=1332
Sheehan, J. J., & Guinee, T. P. (2004). Effect of pH and calcium level on the biochemical, textural and functional properties of reduced-fat Mozzarella cheese. In International Dairy Journal (Vol. 14, Issue 2, pp. 161–172). https://doi.org/10.1016/S0958-6946(03)00167-5
Singh, V. K., Banerjee, I., Agarwal, T., Pramanik, K., Bhattacharya, M. K., & Pal, K. (2014). Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 123, 582–592. https://doi.org/10.1016/j.colsurfb.2014.09.056
Sołowiej, B., Cheung, I. W. Y., & Li-Chan, E. C. Y. (2014). Texture, rheology and meltability of processed cheese analogues prepared using rennet or acid casein with or without added whey proteins. International Dairy Journal, 37(2), 87–94. https://doi.org/10.1016/j.idairyj.2014.03.003
Sołowiej, B., Glibowski, P., Muszyński, S., Wydrych, J., Gawron, A., & Jeliński, T. (2015). The effect of fat replacement by inulin on the physicochemical properties and microstructure of acid casein processed cheese analogues with added whey protein polymers. Food Hydrocolloids, 44(February 2015), 1–11. https://doi.org/10.1016/j.foodhyd.2014.08.022
Tunick, M. H. (1994). Effects of Homogenitation and Proteolysis on Free Oil in Mozzarella Cheese. Journal of Dairy Science, 77(9), 2487–2493. https://doi.org/10.3168/jds.S0022-0302(94)77190-3
Tunick, M. H., Mackey, K. L., Shieh, J. J., Smith, P. W., Cooke, P., & Malin, E. L. (1993). Rheology and microstructure of low-fat Mozzarella cheese. In International Dairy Journal (Vol. 3, Issue 7, pp. 649–662). https://doi.org/10.1016/0958-6946(93)90106-A
Zampouni, K., Mouzakitis, C. K., Lazaridou, A., Moschakis, T., & Katsanidis, E. (2023). Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocolloids, 140(November 2022), 108636. https://doi.org/10.1016/j.foodhyd.2023.108636
Zhao, W., Wei, Z., & Xue, C. (2022). Recent advances on food-grade oleogels: Fabrication, application and research trends. Critical Reviews in Food Science and Nutrition, 62(27), 7659–7676.
Zisu, B., & Shah, N. P. (2005). Textural and functional changes in low-fat Mozzarella cheeses in relation to proteolysis and microstructure as influenced by the use of fat replacers, pre-acidification and EPS starter. International Dairy Journal, 15(6–9), 957–972. https://doi.org/10.1016/j.idairyj.2004.09.014