نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه تبریز، دانشکده کشاورزی

2 دانشیار گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه تبریز

3 استاد گروه شیمی پلیمر دانشکده شیمی دانشگاه تبریز

4 استادیار گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه تبریز

چکیده

در این پژوهش، برای بهبود ویژگی­های کاربردی فیلم­های بر پایه نشاسته، ابتدا از میزان ثابت اسیدسیتریک و
پلی­وینیل­الکل (PVOH) استفاده و پس از آن اثر سطوح مختلف غلظت دو نوع نانوذره نانوکریستال ­سلولز (CNC) و
دی­اکسید­ تیتانیم (TiO2) به‌صورت توأم و نرم­کننده گلیسرول (GLY) بررسی شد.  آزمون گرماسنجی پویشی افتراقی
(DSC) نشان می­دهد که افزودن CNC و TiO2 به‌ترتیب موجب افزایش دمای ذوب و انتقال شیشه­ای و کاهش دمای ذوب و افزایش دمای انتقال شیشه­ای در زیست­ نانوکامپوزیت­ها می­شود.  سپس اثر غلظت سه افزودنی فوق بر میزان جذب
آب، حلالیت در آب و خواص رنگی زیست نانوکامپوزیت بر پایۀ نشاسته نرم شده (PS) مورد بررسی قرار گرفت و مقادیر غلظت بهینه آنها با طرح مرکب مرکزی توسط روش سطح پاسخ (RSM) تعیین گردید.  نتایج حاصل از بهینه­سازی فرمولاسیون با روش سطح پاسخ (RSM) نشان می­دهد که غلظت TiO2، CNC و GLY به‌ترتیب به­صورت درجه دوم، خطی و درجه دوم بر میزان جذب رطوبت معنی­دار و مقادیر بهینه متغیرهای TiO2، CNC و GLY برای حداقل جذب رطوبت به‌ترتیب 118/0، 30/0 گرم و 36/1 میلی­لیتر است.  استفاده توأم CNCو TiO2باعث بهبود کاهش جذب رطوبت و
انحلال­پذیری در آب زیست ­­نانوکامپوزیت می­شود و تأثیرگذاری CNCبیشتر از TiO2 است.  مقادیر بهینه متغیرهای TiO2، CNC و GLY برای حداقل اندیس زردی به‌ترتیب 235/0، 0 گرم و 06/1 میلی­لیتر است. 
 

عنوان مقاله [English]

Combined Use of Titanium Dioxide Nanoparticles and Nanocrystalline Cellulose on Thermal, Hydrophobic and Color Properties of Starch-PVOH Bionanocomposites

چکیده [English]

The present study used a constant level of citric acid and polyvinyl alcohol and different amounts of nanocrystalline cellulose (CNC) and TiO2 nanoparticles to improve the properties of starch film. The effect of different amounts of glycerol was also examined. The results of differential scanning colorimetry demonstrated that the addition of CNC increased the melting and glass transition temperatures and the addition of high levels of TiO2 decreased the melting temperature and increased the glass transition temperature. The effects of these three compounds on the hydrophobicity and color of bionanocomposite plasticized starch were studied and their optimum values determined ​​using a central composite design in response surface methodology. Water uptake data showed that the quadratic effect of TiO2 concentration and the linear and quadratic effects of CNC and GLY concentrations were significant. The optimum levels for TiO2, CNC and GLY for minimum water uptake were 0.118, 0.3 g and 1.36 ml, respectively. Quadratic CNC concentrations and linear glycerol concentrations were significant for water solubility. The optimum levels of TiO2, CNC and GLY for minimum water solubility were 0.235, 0.30 g and 1.36 ml, respectively. The CNC concentration had linear and quadratic effects on the yellowness index (YI) of the bionanocomposite. There was a significant interaction between TiO2 and GLY. The optimum levels of TiO2, CNC and GLY for minimum YI were as 0.235, 0 g and 1.06 ml, respectively.

کلیدواژه‌ها [English]

  • Bionanocomposites
  • Nanocrystalline Cellulose
  • Starch-PVOH
  • Thermal properties
  • Titanium dioxide
Almasi, H., Ghanbarzadeh, B. and Entezami, A. A. 2010. Physicochemical properties of starch-CMC-nanoclay biodegradable films. Int. J. Biol. Macromol. 46, 1-5.
Angles, M. N. and Dufresne, A. 2001. Plasticized starch/tunicin whiskers nanocomposites. Macromolecules. 34, 2921-2931.
Aziz Samir, M., Alloin, F. and Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6, 612-626.
Bolin, H. R. and Huxsoll, C. C. 1991. Control of minimally processed carrot (Dascus carota) surface discoloration caused by abrasion peeling. J. Food Sci. 56, 416−418.
Cao, X., Chen, Y., Chang, P. R., Muir. A. D. and Falk, G. 2008a. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. eXPRESS Polym. latters. 2, 502-510.
Cao, X., Chen, Y., Chang, P. R., Stumborg, M. and Huneault, M. A. 2008b. Green composites reinforced with hemp nanocrystals in plasticized starch. J. Appl. Polym. Sci. 109, 3804-3810.
Chang, P. R., Ruijuan, J., Zheng, P., Yu, J. and Ma, X. 2010. Preparation and properties of glycerol plasticized starch (GPS) cellulose nanoparticle (CN) composites. Carbohyd. Polym. 79, 301-305.
Chen, G., Dufresne, A., Huang, J. and Chang, P. R. 2009a. A novel thermoformable bionanocomposite based on cellulose nanocrystal-graft-poly (ecaprolactone). Macromol. Mater. Eng. 294, 59-67.
Chen, Y., Liu, C., Chang, P. R., Anderson, D. P. and Huneault, M. A. 2009b. Pea starch based composite films with pea hull fibres and pea hull fiber derived nanowhiskers. Polym. Eng. Sci. 49(2): 369-378.
Cheng, Q., Wang, S. and Rials, T. G. 2009. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites. 40, 218-24.
Das, K., Ray, D., Banerjee, C., Bandyopadhyay, N. R., Sahoo, S., Mohanty, A. K. and Misra, M. 2010. Physicomechanical and thermal properties of jute nanofiber reinforced biocopolyester composites. Ind. Eng. Chem. Res. 49, 2775-2782.
Ghanbarzadeh, B., Almasi, H. and Entezami, A. A. 2010. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emerg. Technol. 11, 697-702.
Gontard, N., Duchez, C., Cuq, B. and Guilbert, S. 1994. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Food Sci. Technol. 29, 39-50.
Kvien, I., Sugiyama, J., Votrubec, M. and Oksmanbec, K. 2007. Characterization of starch based nanocomposites. J. Mater. Sci. 42, 8163-8171.
Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G. and Leng, X. 2011. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloid. 25(6): 1-7.
Liorens, A., Lloret, E., Picouet, P. A., Trbojevich, R. and Fernandez, A. 2012. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci.Technol. 24(1): 19-29.
Liu, B. and Huang, T. B. 2008. Nanocomposites of genipin-crosslinked chitosan/silver nanoparticles-structural reinforcement and antimicrobial properties. Macromol. Biosci. J. 8, 932-941.
Lu, Y., Weng, L. and Cao, X. 2005. Biocomposites of plasticizes starch reinforced with cellulose crystallites from cottonseed linter. Macromol. Biosci. J. 5, 1101-1107.
Mahshid, S., Sasani Ghamsari, M., Askari, M., Afshar, N. and Lahuti, S. 2006. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Semicond. Phys. Quantum Electron. Opto-Electron. 9(2): 65-68.
Majdzadeh, A. K. and Nazari, B. 2010. Improving the mechanical properties of thermoplastic starch /poly(vinyl alcohol)/clay. Compos. Sci. Technol. 70, 1557-1563.
Mao, L., Imam, S., Gordon, S., Cinelli, P. and Chiellini, E. 2000. Extruded cornstarch glycerol polyvinyl alcohol blends: mechanical properties, morphology, and biodegradability. J. Appl. Polym. Sci.
8(4): 205-216.
Noushirvani, N., Ghanbarzadeh, B. and Entezami, A. A. 2011. Study of the physical properties of starch-poly vinyl alcohol bionanocomposites contain celluos nanocrystal and nanoclay. M. Sc. Thesis. Faculty of Agriculture. Tabriz University. Tabriz. Iran. (in Farsi)
Oleyaei, A. 2012. Preparation and comparing of the physical properties of starch nanobiocomposites contain nanoclay and Titanium dioxide. M. Sc. Thesis. Faculty of Agriculture. Tabriz University. Tabriz. Iran. (in Farsi)
Paralikar, S. A., Simonsen, J. and Lombardi, J. 2008. Poly vinyl alcohol/cellulose nanocrystal barrier membranes. J. Membrane Sci. 320, 248-258.
Podsiadlo, P., Choi, S. Y., Shim, B., Lee, J., Cuddihy, M. and Kotov, N. A. 2005. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol. 6(6): 2914-2918.
Ramaraj, B. 2007. Crosslinkedpoly (vinyl alcohol) and starch composite films. II. physicomechanical, thermal properties and swelling studies. J. Appl. Polym. Sci. 103, 909-916.
Roohani, M., Habibi, Y., Belgacem Naceur, M., Ebrahim, G., Karimi, A. N. and Dufresne, A. 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur. Polym. J.
44, 2489-2498.
Shi, R., Zhang, Z. Z., Liu, Q. Y., Han, Y. M., Zhang, L. Q. and Chen, D. F. 2007. Characterization of citric acid/glycerol co-plasticized thermoplastic starch prepared by melt blending. Carbohyd. Polym.
69, 748-755.
Siddaramaiah, R. B. and Somashekar, R. 2004. Structure property relation in poly vinyl alcohol starch composites. J. Appl. Polym. Sci. 91(1): 630-635.
Tao, Y., Pan, J., Yan, S., Tang, B. and Zhu, L. 2007. Tensile strength optimization and characterization of chitosan/TiO2 hybrid film. Mater. Sci. Eng. B. 138, 84-89.
Taskaya, L., Chen, Y. C. and Jaczynski, J. 2010. Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/ precipitation. LWT-Food Sci. Technol. 43, 401-408.
Xiao-e, L., Green, A. N. M., Haque, S. A., Mills, A. and Durrant, J. R. 2004. Light-driven oxygen scavenging by titania/polymer nanocomposite films. J. Photochem. Photobiol. A. 162, 253-259.