نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی منابع آب دانشگاه تهران

2 استادیار گروه مهندسی آبیاری و آبادانی دانشگاه تهران

چکیده

پیش­بینی کیفیت آب رودخانه­ها به‌منظور مدیریت مناسب حوضه آنها ضروری است، تا بتوان برای کنترل مقدار آلاینده­ها و رساندن آنها به حد مجاز گام­هایی برداشت.  در مقاله حاضر، قابلیت پیش­بینی سری­های زمانی پارامترهای هدایت الکتریکی و کلر ایستگاه آستانه از رودخانه سفیدرود با استفاده از مدل­های خطی تصادفی بررسی شده است.  به‌منظور پیش­بینی فصلی سری­های زمانی پارامترهای مذکور، از مدل خودهمبسته میانگین متحرک فصلی انباشته (SARIMA) استفاده شد.  برای برازش این مدل از سری­های زمانی بین سال­های 1370 تا 1381، و به‌منظور صحت سنجی مدل از داده­های سال­های 1382 تا 1384 استفاده شد.  ابتدا روند و ایستایی سری­های زمانی هدایت الکتریکی و کلر به‌ترتیب با آزمون­های من-کندال بررسی و پس از آن الگوهای فصلی 12 ماهه پس از تفاضل­گیری مرتبه اول حذف شد.  مدل‌سازی یک سری زمانی به‌طور کلی شامل سه مرحله است: شناسایی مدل، برآورد پارامترهای مدل، و کنترل تشخیصی.  در مرحلةِ شناسایی، با استفاده از توابع خودهمبسته و خودهمبستةِ جزئی مدل­های مختلف SARIMA شناسایی و مدلی که کمترین مقدار ضریب آکائیک را داشت به‌عنوان بهترین مدل برازش داده شده انتخاب شد.  پارامترهای مدل با استفاده از روش تخمین حداقل مربعات باقیمانده­ها برآورد شد.  در مرحلة کنترل تشخیصی، مشاهده شد که باقیماندهء­ مدل­ها مستقل، همسان ­واریانس و دارای توزیع نرمال است.  سری­های زمانی هدایت الکتریکی و کلر برای سال­های 1382 تا 1384 توسط مدل­های انتخاب شده پیش­بینی شد.  به‌منظور
صحت­سنجی مدل، میانگین و واریانس داده­های مشاهده­ای و پیش­بینی شده مقایسه شدند و اختلاف معنی­داری بین آنها مشاهده نشد.  ریشه خطای مربعات متوسط برای پارامترهای هدایت الکتریکی و کلر به‌ترتیب برابر 9/278 و 22/2 برآورد شد.  به این ترتیب با اطمینان بالا می­توان روشمدل­سازی SARIMA را برای پیش­بینی مقادیر هدایت الکتریکی و غلظت کلر در ایستگاه آستانه از رودخانه سفیدرود پیشنهاد کرد.

عنوان مقاله [English]

Time Series Forecasting of Sefidrood River Water Quality Using Linear Stochastic Models

چکیده [English]

In the management of river basins, prediction of river water quality is essential to maintain water quality within standard limits. This study performed a time-series analysis of the prediction of chlorine concentration and electrical conductivity time series data for the period of 1991-2005 from Sefidrood River in northern Iran. The seasonal prediction of chlorine and electrical conductivity time series data was done using the linear stochastic model known as the multiplicative seasonal autoregressive integrated moving average (SARIMA). Initially, Mann-Kendall and Box-Pierce tests were used to identify the trend and stationary state of the time series, respectively. The results showed that there was no significant trend in these time series, but that 12-month seasonal patterns were observed. As a result, seasonal patterns were removed from both time series data using first-order differencing. SARIMA modeling was performed in three steps: model identification, parameter estimation and diagnostic checking. Different models of SARIMA were identified according to the ACF and PACF time series results and the model with the minimum AIC criterion was selected. For parameter estimation, model parameters were estimated using a least squares optimization algorithm that minimized the residual sum of squares. The results of diagnostic checking then indicated that the residuals were independent, normally distributed and homoscadastic. The selected SARIMA model was then used to predict chlorine concentration and electrical conductivity time series data for 2003-2005. There was a good unanimity between the predicted and observed data. For model verification, the mean and variance of the predicted and observed data were compared. The RMSE for Cl and EC were 2.2 and 278.9, respectively. The results showed that there was no significant difference between the predicted and observed time series data. This study showed that the SARIMA model can be used reliably to predict chlorine concentration and electrical conductivity time series data in Sefidrood River.

کلیدواژه‌ها [English]

  • Electrical conductivity
  • Mann-Kendall
  • SARIMA
  • time series
Ahmad, S., Khan, I.H. and Parida, B.P. 2001. Performance of stochastic approaches for forecasting river water quality. Water Res. 35, 4261–4266.
Akaike, H. 1974. A new look at statistical model identification. IEEE Transactions on Automated Circuits. 19, 716–723.
Benyahya, L., Hilaire, A.S., Quarda, B.M.J.T., Bobee, B. and Nedushan, B.A. 2007. Modeling of water temperatures based on stochastic approaches: Case study of the Deschutes river. J. Environ. Eng. Sci. 6, 437–448. 
Box, G.E.P. and Jenkins, G.M. 1976. Time Series Analysis: Forecasting and Control. San Francisco. CA: Holden Day, 575 p.
Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. 1994. Time Series Analysis: Forecasting and Control. 3rd Ed. Prentice Hall, Englewood Cliffs Inc., New Jersey. 598 p.
Durdu, O. 2009. Stochastic approaches for time series forecasting of boron: A case study of Western Turkey. Environ. Monit. Assess. 687–701.
Hassanzadeh, S., Hosseinibalam, F. and Alizadeh, R. 2008. Statistical models and time series forecasting of sulfur dioxide: A case study Tehran. Environ. Monit. Assess. 155, 149–155.
Karamouz, M. and Araghinejad, Sh. 2005. Advanced Hydrology. Amirkabir University of Technology. Ch. 5, 256–257. (in Farsi)
Karbasi, A. and Shahbazi, A. 2008. Analysing water quality of rivers in Gilan province. Advanced Environ Res. J. 5, 2–3. (in Farsi)
Kurunç, A., Yürekli, K. and Çevik, O. 2005. Performance of two stochastic approaches for forecasting water quality and streamflow data from Yesilirmak river, Turkey. Environ Modell Softw. 20, 1195–1200.
Ljung, G.M. and Box, G.E.P. 1978. On a measure of a lack of fit in time series models. Biometrika. 65 (2): 297–303.
Makridakis, S., Wheelwright, S.C. and Hyndman, R. 2003. Forecasting Methods and Applications. Singapore: Wiley (ASIA).
Malmir, M. 2006. Prediction of low flow time series in rivers. M. Sc. Thesis. Faculty of Agriculture. Theran University. Karaj. Iran. (in Farsi)
Mishra, A.K. and Desai, V.R. 2005. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess. 19, 326–339.
Mishra, A.K. and Desai, V.R. 2006. Drought forecasting using feed-forward recursive neural network. Ecol. Model. 198, 127–138.
Modarres, R. 2007. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk Assess. 21, 223–233.
Pokorny, M. 1987. An Introduction to Econometrics. Oxford: Basil Blackwell Ltd., New York.
Ragavan, A.J. and Fernandez, G.C. 2006. Modeling water quality trend in long term time series. Proceedings of SAS Users Group Meeting (SUGI 31). March 2006, San Francisco, USA. paper 205–31.