نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد

2 دانشیار دانشکده مهندسی آب و خاک دانشگاه تهران

3 استادیار دانشکده مهندسی آب و خاک دانشگاه تهران

4 استادیار دانشکده فیزیک دانشگاه صنعتی شریف.

چکیده

منحنی مشخصة رطوبتی خاک یکی از مهم­ترین خصوصیات خاک در تعیین ویژگی‌های هیدرولیکی از جمله هدایت هیدرولیکی غیر اشباع است.  از آنجا ­که اندازه‌گیری این ویژگی اجتناب­ناپذیر است تلاش محققان همواره بر آن بوده تا با روش‌های غیرمستقیم، مانند توابع انتقالی و روابط تجربی، دستیابی به این ویژگی خاک را آسان سازند.  در این مطالعه با توجه به ارتباط تنگاتنگ بین منحنی مشخصة رطوبتی و منحنی دانه‌بندی خاک و با استفاده از هندسة فرکتالی سعی شد تا رابطه‌ای منطقی بین ابعاد فرکتالی این دو منحنی به‌دست آید تا بر اساس آن بتوان با اندازه‌گیری منحنی دانه‌بندی خاک به عنوان یک ویژگی
سهل­الوصول، منحنی رطوبتی خاک را تخمین زد.  به همین منظور از 40 نمونه خاک شامل 7 بافت مختلف استفاده شد.  پس از آن، دو رابطة لگاریتمی برای تعیین بعد فرکتالی منحنی دانه‌بندی (Dp) و منحنی مشخصه رطوبتی (Ds) بر اساس درصد رس آنها با ضریب همبستگی 96/0 و 93/0 ارائه شد.  و سرانجام یک رابطة غیر خطی درجه سه بین دو بعد فرکتالی Ds و Dp با ضریب همبستگی 94/0 به‌دست آمد.  برای ارزیابی این رابطه از مشخصات فیزیکی 5 نمونه خاک با بافت مختلف در استان فارس استفاده شد.  بدین ترتیب که ابتدا بر اساس بعد فرکتالی محاسبه­شده از منحنی دانه‌بندی، بعد فرکتالی مربوط به منحنی مشخصة رطوبتی آنها تعیین و منحنی مشخصه رطوبتی با استفاده از مدل ژو تخمین زده شد.  به منظور افزایش دقت در پیش‌بینی منحنی مشخصة رطوبتی، با ارائة مدل واسنجی و با استفاده از دو نقطة اندازه‌گیری­شده از منحنی مشخصة رطوبتی سعی شد تا مقادیر پیش‌بینی­شده رطوبت اصلاح شوند.  مقادیر واسنجی و اندازه‌گیری­شدة رطوبت خاک با استفاده از آنالیز پارامترهای آماری خطای استاندارد نسبی (RSE) و ضریب آکائیک (AIC) مقایسه شدند.  نتایج نشان داد که مدل واسنجی قادر است مقادیر RSE و AIC را به ترتیب از 50 تا 85 درصد و 20 تا 93 درصد کاهش دهد. 

عنوان مقاله [English]

Prediction of Soil Water Retention Curve Using Soil Particle-Size Distribution

چکیده [English]

The soil water retention curve (SWRC) is a basic characteristic of the determination of soil hydraulic properties, including unsaturated hydraulic conductivity. Measurement of this curve is essential to research, thus scientists have focused on indirect methods such as pedotransfer functions and empirical relationships to estimate SWRC easily. Since there is a close relationship between SWRC and particle-size distribution (PSD), fractal geometry was used in this study to define a relationship between the fractal dimensions of these two curves. This helps to obtain an SWRC equation based on soil particle size distribution as a readily available parameter. To achieve the above objective, 40 soil samples with seven different textures were used. Two logarithmic equations were presented for determination of the fractal dimensions of PSD and SWRC based on their clay percentages. Their correlation coefficients equaled 0.96 and 0.93, respectively. Finally, a cubic polynomial equation was obtained between the fractal dimension of SWRC (Ds) and the fractal dimension of PSD (Dp) with a goodness of fit of R2=0.94. The physical properties of another five soils collected from Pars province were used to evaluate this relationship. First, the Dp of the soils were calculated. Next, using the Ds-Dp relationship, the Ds and the SWRC equation were estimated using the Xu model. To increase the accuracy of the prediction of SWRC, a calibration model was used to adjust the predicted water content values by using two measured points on the SWRC. Comparison of the adjusted water content values with measured ones was done by statistical analysis and calculating the relative standard error (RSE) and Akaike's information criterion (AIC).  The results showed that the RSE and AIC values decreased 50% to 85% and 20% to 93%, respectively, using the calibration model.

کلیدواژه‌ها [English]

  • Fractal dimension
  • Particle size distribution
  • Soil Water Retention Curve
Abolpour, B. 1998. Determining soil moisture retention curve and hydraulic properties from soil texture. Iranian J. Agric. Sci. 29(1): 195-205. (in Farsi)
Arya, L. M. and Paris, J. F. 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45, 1023-1030.
Brooks, R. H. and Corey, A. T. 1964. Hydraulic properties of porous media. Colorado State University. Hydrology Paper No. 3.
Campbell, G. S.1974. A simple method for determining unsaturated hydraulicconductivity frommoisture retention data. Soil Sci. 117, 311-314.
de Gennes, P. G. 1985. Partial Filling of a Fractal Structure by a Wetting Fluid. In: Adler. Fritzsche, H. and Ovshinsky, S. R. (Eds.). Physics of Disordered Materials. Plenum Press.
N. Y.
Filgueira, R. R., Pachepsky, Ya. A., Fournier, L. L., Sarli, G. O.and Aragon, A. 1999. Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling. Soil Sci. 164, 217-223.
Ghanbarian-Alavijeh, B. 2007. Prediction of soil water retention curve using fragmnet-size distribution.M. Sc. Thesis. Dept. of Water and Soil Eng. University of Tehran. Karaj. Iran. (in Farsi)
Ghanbarian-Alavijeh, B. and Liaghat, A. M. 2007. Comparison of two fractal and empirical models in prediction of unsaturated hydraulic conductivity. Proceeding of the 10th Congress of Iranian Soil Science. University of Tehran. (in Farsi)
Ghanbarian-Alavijeh, B. Liaghat, A. M., Shorafa, M. and Moghimi-Araghi, S. 2007. Evaluation of prefect fractal model in estimation of soil water retention curve. Iranian J. Irrig. Drain.
1, 7-19. (in Farsi)
Huang, G. H. and Zhan, W. 2002. Fractal property of soil particle size distribution and its application. Acta Pedologica Sinica. 39(4): 490-497.
Huang, G. H. and Zhang, R. 2005. Evaluation of soil water retention curve with the pore-solid fractal model. Geoderma. 127, 52-61.
Hutson, J. L. and Cass, A. 1987. A retentivity function for use in soil water simulation models. J. Soil Sci. 38, 105-113.
Kravchenko, A. and Zhang, R. D. 1998. Estimating the soil water retention from particle-size distributions: A fractal approach. Soil Sci. 163, 171-179.
Leij, F. J., Russel, W. B. and Lesch, S. M. 1997. Closed-form expressions for water retention and conductivity data. Ground Water. 35, 848-858.
Liu, J. L. and Xu, S. H. 2003. Figuring soil water characteristic curve based on particle size distribution data: Application of fractal method. Acta Pedologica Sinica. 40(1), 46-52.
Mandelbrot, B. B. 1982. The Fractal Geometery of Nature. Freeman. N. Y.
Mertens, J., Stenger, R. and Barkle, G. F. 2006. Multi objective inverse modeling for soil parameter estimation and model verification. Vadose Zone J. 5, 917-933.
Minasny, B. and McBratney, A. B. 2007. Estimating the water retention shape parameter from sand clay content. Soil Sci. Soc. Am. J. 71(4): 1105-1110.
Moench, A. F. 2003. Estimation of hectare-scale soil moisture characteristics from aquifer-test data. J. Hydrol. 281(1): 82-95.
Perfect, E. 1999. Estimating soil mass fractal dimension from water retention curves. Geoderma. 88, 221-231.
Rieu, M. and Sposito, G. 1991. Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Sci. Soc. Am. J. 55, 1231-1238.
Russo, D. 1988. Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties. Water Resour. Res. 24, 453-459.
Schaap, M. G. and Bouten, W. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32, 3033-3040.
Schaap, M. G., Leij, F. J. and van Genuchten, M. Th. 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163-176.
Taghizadeh, A. 2005. Prediction of soil water retention curve and hydraulic conductivity using particle-size distribution.M. Sc. Thesis. Dept. of Water and Soil Eng. University of Tehran. Karaj. Iran. (in Farsi)
Tyler, S. W. and Wheatcraft, S. W. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53, 987-996.
Tyler, S. W. and Wheatcraft, S. W. 1990. Fractal processes in soil water retention. Water Resour. Res. 26, 1047-1054.
Tyler, S. W. and Wheatcraft, S. W. 1992. Fractal scaling of soil particle size-distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 56, 362-369.
van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Am. J. 44, 892-898.
Vereecken, H., Maes, J., Feyen, J. and Darius, P. 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci. Soc. Am. J. 148(6):
389-403.
Wösten, J. H. M. and van Genuchten, M. Th. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J. 52, 1762-1770.
Wösten, J. H. M., Finke, P. A. and Jansen, M. J. W. 1995. Comparison ofclass and continuous pedotransfer functions to generate soilhydraulic characteristics. Geoderma. 66, 227-237.
Wu, Q., Borkovec, M. and Sticher, H. 1993. On particle-size distributions in soils. Soil Sci. Soc. Am. J. 57, 883-890.
Xu, Y. 2004. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution. Computers and Geotechnics. 31, 549-557.