نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی علوم خاک دانشگاه تهران

2 استادیار پژوهشی پژوهشکده حفاظت خاک و آبخیزداری

3 استاد گروه مهندسی علوم خاک دانشگاه تهران

چکیده

در میان فرآیندهای مختلف تخریب اراضی، فرسایش خاک تهدیدیجدی برای منابع خاک و آب کشور است.  خصوصیات فیزیکی و شیمیایی خاک تأثیر مهمی بر تولید رواناب و رسوب دارند.  این تحقیق با هدف بررسی تأثیر برخی از این خواص در تولید رواناب، رسوب، و همچنین غلظت رسوب در شرایط صحرا انجام شد.  آزمایش­ها روی خاک­های منطقه گُل‌آباد اردستان با متوسط بارندگی سالیانه حدود 170 میلی‌متر اجرا شد.  به این منظور از یک باران­ساز قابل حمل در صحرا و در 9 واحد همگن از منطقه با 3 تکرار (جمعاً در 27 پلات آزمایشی) استفاده شد.  بارشی با شدت 35 میلی‌متر در ساعت به مدت 40 دقیقه روی پلات‌هایی با سطح یک متر مربع، شبیه‌سازی و نمونه‌های رواناب و رسوب در انتهای هر بارش جمع‌آوری شد.  همچنین برخی خصوصیات فیزیکی و شیمیایی شامل بافت خاک، سنگریزه در دو موقعیت (سطح و داخل خاک)، رطوبت اولیه و رطوبت در مکش های صفر، 03/0 و 5/1 مگاپاسکال، pH، EC، آهک و مادة آلی اندازه‌گیری شد.  نتایج حاکی از آن است که با افزایش میزان رس تولید رسوب و همچنین غلظت رسوب افزایش می­یابد در حالی که بخش شن، تولید رواناب و رسوب را کاهش می­دهد.  با افزایش سنگریزة سطحی و سنگریزة داخل خاک، رواناب به ترتیب افزایش و کاهش می­دهد.  سنگریزة سطحی نقش مهم­تری نسبت به سنگریزه داخل خاک نشان داد
به­طوری که افزایش آن افزایش تولید رسوب را نیز به دنبال داشت.  با افزایش رطوبت در مکش­های 03/0 و 5/1 مگاپاسکال، تولید رسوب و غلظت آن افزایش معنی­داری نشان داد.  افزایشpH باعث کاهش تولید رواناب شد.  آهک به دلیل تشکیل سلة سطحی، افزایش فرسایش را به دنبال داشت.  در مجموع، از میان خصوصیات بررسی­شده، توزیع اندازه ذرات مهم­ترین عامل در کنترل رواناب و رسوب در خاک­های مورد مطالعه معرفی شد.

عنوان مقاله [English]

The Effect of Soil Physical and Chemical Properties on Runoff Generation and Sediment Yield Using Rainfall Simulator

چکیده [English]

Among different land degradation processes, soil erosion is a serious threat to the soil and water resources in Iran. Soil physical and chemical properties have an important role in runoff and sediment. The purpose of this study was to investigate the effect of some of these agents on sediment yield, runoff generation and sediment concentration, under interrill erosion process at the field. The experiments were done on Golabad soils, with annual precipitation of 170 mm. A portable rainfall simulator was used in 9 homogenous sites of the watershed with 3 replications (overall 27 plots). Rain intensity of 35 mm hr–1 for 40 minutes was run on 1m2 plots. Runoff and sediment samples were collected from each plot. Some of soil physical and chemical properties consisted of texture, gravel content in two positions, moisture content, pH, EC, CaCo3 and organic matter were determined. The results indicated that increasing clay content, sediment yield and its concentration increased while, sand fraction decreased runoff and sediment. Surface gravel had an important role in erosion control. Increasing surface and embedded gravel, runoff rate increased and decreased, respectively. Besides, due to surface gravel, sediment yield increased. There were positive and significant relations between moisture content at 0.03 and 1.5 MPa with sediment yield and its concentration. Among chemical properties, pH was entered into the regression model. Also, due to crusting, lime increased erosion. It was concluded that particle size distribution is the main factor which controls sediment yield, runoff generation and sediment concentration under interrill erosion processes in this arid soils.

کلیدواژه‌ها [English]

  • : Physical and Chemical Properties
  • rainfall simulator
  • runoff generation
  • sediment yield
  • Sediment Concentration
  • Surface and Embedded Gravel
Amiri, B. 1997. Studies on reclamation and development of agriculture and natural resources, Zayandehroud and Ardestan watersheds. Report No. Consulting Engineers of Yekom. Ministry of Programming and Budget Deputy of Agriculture. Tehran. (in Farsi)
Bajracharya, R. M., Elliot, W. J. and Lal, R. 1992. Interrill erodibility of some Ohio soils based on field rainfall simulation. Soil. Sci. Soc. Am. J.5, 267-272.
Barthes, B. and Roose, E. 2002. Aggregate stability as an indicator of soil susceptibility to runnoff and erosion: validation at several levels. Catena. 47,133-149.
Blackburn, W. H. 1975. Factors influencing infiltration and sediment production of semiarid rangelands in Nevada. Water. Reso. Res. 11, 929-937.
Anon, 1996. Watershed studies of Ardestan watershed. Report No. 2. Consulting Engineers of Rouyan. Ministry of Watershed Deputy of Agriculture. Climatology. (in Farsi)
Elliot, W. J., Laflen, J. M. and Kohl, K. D. 1989. Effect of soil properties on soil erodibility.  Paper No. 892150. ASAE. St. Joseph. Michigan.
Elliot, W. J., Olivieri, L. J., Laflen, J. M. and Kohl, K. D. 1990. Predicting soil erodibility from soil strength measurements. Paper No. 902009. Presented at the Summer Meeting of ASAE. Columbus. Ohio.
Epstein, E. and Grant, W. 1966. Rock and crop- management effects on runoff and erosion in a potato- producing area. Trans. ASAE. 9, 832-833.
Ghadiri, H., Hussein, J. and Rose, C. 2004. The effect of salinity and sodicity on soil erodibility, sediment transport and downstream water quality. Paper No. 631. 13th International Soil Conservation Organisation Conference. Brisbane.
Grant, W. J. and Struchtemeyer, R. A. 1959. Influence of the coarse fraction in two Maine potato soils on infiltration, runoff and erosion. Soil. Sci. Soc. Am. Proc. 23, 391-394.
Hamed, Y., Albergel, J., Pepin, Y., Asseline, J., Nasri, S., Zante, P., Berndtsson, R., El- Niazy, M. and Balah, M. 2002. Comparison between rainfall simulator erosion and observed reservior sedimentation in an erosion sensitive semiarid catchment. Catena. 50, 1-16.
Iverson, R. M. 1980. Processes of accelerated pluvial erosion on desert hillslopes modified by vehicular traffic. Earth Surf. Proce.5, 369-388.
Kinnell, P. I. A. and Risse, L. M. 1998. USLE- M: empirical modelling rainfall erosion through runoff and sediment concentration. Soil Sci. Soc. Am. J. 62, 1667-1672.
Mahmoodabadi, M. 2003. Zonation of soil erosion risk in Golabad watershed using geographical information system (GIS) and remote sensing (RS) technique. M.Sc. Thesis. Department of Soil Science. Faculty of Agriculture Tehran University. (in Farsi)
Mahmoodabadi, M. and Rafahi H. G. 2004. The influence of soil particle size distribution on plot scale erosion in Golabad watershed, Iran. CIGR. International Conference. Beijing. China. Vol. I. No. 10-100A.
Mahmoodabadi, M. and Rafahi, H. G. 2006. Evaluation of interrill erosion rate using rainfall simulation in comparison to the WEPP. 2nd International Symposium on Soil Erosion and Dryland Farming. Yangling. Shaanxi. China. Session 7-1.
Mahmoodabadi, M., Rouhipour, H., Arabkhedri, M. and Rafahi, H. G. 2007. Calibration, Spatial Distribution and Rain Characteristics of Rainfall Simulation, Case Study: Soil Conservation & Watershed Management Research Institute-Rainfall Simulator. Iran Watershed Management Sci. Vol. 1. In press. (in Farsi)
Merzouk, A. and Blake, G. R. 1991. Indices for the estimation of interrill erodibility of Moroccan soils. Catena. 18, 537-550.
Meyer, L. D. and Harmon, W. C. 1984. Susceptibility of agricultural soils to interrill erosion. Soil Sci. Soc. Am. J. 48, 1152- 1157.
Misopolinos, N. D., Silleos, N. G. and Prodromou, K. P. 1988. The influence of exchangeable Mg on certain physical soil properties in a number of Mg-affected soils. Catena. 15, 127-136.
Morgan, R. P. C. 1995. Soil erosion and conservation. 2nd Ed. Silsoe College Canfield. Longman.
Anon, 1996. Soil survey laboratory methods manual. National Soil Survey Center. Soil Survey Investigations. Report No. 42. Lincoln. Nebraska.
Norton, D., Shainberg, I., Cihacek, L. and Edwards, J. H. 1999. Erosion and Soil Chemical Properties. In: Lal, R. (Ed.). Soil Quality and Soil Erosion. Soil Water Conservation Society and CRC Press. Boca Raton.
Parysow, P., Wang, G., Gertner, G. and Anderson, A. B. 2003. Spatial uncertainly analysis for mapping soil erodibility based on joint sequential simulation. Catena. 736, 1-14.
Paye, A. L. and Kenne, H. R. 1986. Methods of Soil Analysis. Part II. Chemical and Mineralogical Properties. ASA. SSSA. USA.
Poesen, J. and Ingelmo Sanchez, F. 1992. Runoff and sediment yield from topsoils with different prosity as affected by rock fragment cover and position. Catena. 19, 451-474.
Rafahi, H. 2003. Soil Erosion and Control. Tehran University Pub. Vol. 4. (in Farsi)
Raisiyan, R. 1997. Study on rainfall intensity, land slope, soil texture and plant cover influences on infiltration and runoff rate in several basins of Chahar-Mahalo Bakhtiyari province. M.Sc. Thesis. Department of Irrigation and Drainage. Faculty of Agriculture. Isfahan University of Technology. (in Farsi)
Romkens, M. J. M., Young, R. A., Poesen, J. W. A., Mc Cool, D. K., El-Swaify S. A. and Bradford, J. M. 1997. Soil Erodibility Factor (K). In: Renard, K. G., Foster, G. R., Weesies, G. A., Mc Cool, D. K. and Yoder, D. C. (Eds.). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture. Agriculture Handbook No. 703.
Rouhipour, H., Javadi, P. and Mahboubi, A. A. 2005. Effect of gravel on erosion and sediment yield of two soils using flume and rainfall simulation. Proceedings of 3rd National Symposium of Erosion and Sediment. Tehran. Iran. (in Farsi)
Sheklabadi, M. 2000. Study on relative erodibility of some geological units of Golabad Watershed in relation to soil physico-chemical properties. M.Sc. Thesis. Department of Soil Science. Faculty of Agriculture. Isfahan University of Technology. (in Farsi)
Sheridan, G. J., So, H. B, Loch, R. J. and Walker, C. M. 2000. Estimation of erosion model erodibility parameters from media properties. Aust. J. Soil. Res. 38, 265-284.
Toy, T. J., Foster, G. R. and Renard, K. G. 2002. Soil Erosion Processes, Prediction, Measurement and Control. John Wiley and Sons, Inc. N. Y.
Tromble, J. M. 1976. Semiarid rangeland treatment and surface runoff. J. Range Management. 29, 251-255.
Tromble, J. M., Renard, K. G. and Tatcher, J. M. 1974. Infiltration for three rangeland soil- vegetation complexes. J. Range Management. 27, 318-321.
Valmis, S., Dimoyiannis, D. and Danalatos, N. G. 2005. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece. Soil Till. Res. 80, 139-147.
Vanelslande, A., Lal, R. and Gabriels, D. 1987. The erodibility of some Nigerian soils: A comparison of rainfall simulator results with estimates obtained from the Wischmeier nomograph. Hydr. Process. 1, 255-265.
Veihe, A. 2002. The spatial variability of erodibility and its relation to soil types: A study from northern Ghana. Geoderma. 106, 101-120.
Verhagen, T. H. 1984. The influence of soil properties on the erodibility of Belgian loamy soils: A study based on rainfall simulation experiments. Earth Surf. Process. Landforms. 9, 499-507.
Victora, C., Kacevas, A. and Fiori, H. 1998. Soil erodibility assessments with simulated rainfall and with the USLE nomograph in soil from Uruguay. Proceedings of 16th World Congress of Soil Science. Montpellier. France. Symp. No. 31.
Wilcox, B. P., Wood, M. K. and Tromble, J. M. 1988. Factors influencing infiltrability of semiarid mountain slopes. Earth Surf. Proce. 41, 197-206.
Wischmeier, W. H. and Mannering, J. V. 1969. Relation of soil properties to its erodibility. Soil Sci. Soc. Am. Proc. 33, 131-136.
Young, R. A. and Mutchler, C. K. 1977. Erodibility of some Minnesota soils .J. Soil Water Conserv. 32, 180-182.