نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی

2 عضو هیات علمی گروه مهندسی آب، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران

3 استاد پژوهش موسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی

4 استاد گروه مهندسی آب، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده

تغییرات مکانی و زمانی نفوذ، مدیریت سیستم­های آبیاری سطحی و به ویژه آبیاری جویچه­ای را پر هزینه، زمان­بر و پیچیده می­سازد.  در آبیاری جویچه­ای، پارامترهای نفوذ برای دبی­های ورودی متفاوت، شکل هندسی جویچه و مقدار آب خاک، متغیر هستند و از این­رو ارائةرابطه­ای کلی برای نفوذ دشوار است.  یکی از روش­های مناسب برای تعیین رابطۀ کلی نفوذ، استفاده از مقیاس‌سازی است.  در این مقاله نشان داده شده که به کمک آنالیز ابعادی و با استفاده از داده­های 12 آزمایش آبیاری جویچه­ای متفاوت که هر یک 15 نوبت تکرار شده است، رابطه‌ای برای مقیاس­سازی مشخصه­های نفوذ آّب در خاک به دست آمده است.  مقادیر R2و RMSE برای واسنجی رابطۀ پیشنهادی به ترتیب برابر 984/0 و 0199/0 محاسبه شد.  علاوه بر این، پس از راست ­آزمایی رابطه استخراجی، مقدار بالای ضریب R2 (98/0>) و مقدار اندک آماره RMSE (01/0<) نشان از دقت مناسب مدل دارد.  مقایسة این رابطه با روابط ارائه شده در پژوهش­های گذشته، به دو دلیل برتری رابطۀ حاضر را نشان می‌دهد: 1) نیاز به داده­های ورودی کم­تر (دبی ورودی، عمق آب در جویچه، زمان آبیاری و زمان پیشروی)، و
2) اندازه­گیری آسان­تر داده­های ورودی.

کلیدواژه‌ها

عنوان مقاله [English]

Use of Scaling in Developing an Equation to Estimate Infiltration of Water in Soil in Furrow Irrigation

نویسندگان [English]

  • A Tavakoli 1
  • hossein Babazadeh 2
  • fariborz Abbasi 3
  • hossein sedghi 4

چکیده [English]

The management of surface irrigation systems, specifically furrow irrigation, is costly, time-consuming, and complicated because of spatial and temporal variations of infiltration. The infiltration parameters for inflow discharge, furrow geometry, and soil water content vary for furrow irrigation; consequently, it is difficult to present a general equation for infiltration. Scaling is a suitable method of obtaining a general relationship for infiltration. The present study developed an appropriate equation for scaling of infiltration components using dimensional analysis and irrigation test datasets with 15 replicates for 12 distinctive furrows. Calibration of the proposed equation produced R2 and RMSE values of 0.984 and 0.0199, respectively. The results for validation of the equation demonstrated high R2 values (>0.98) and low RMSE values (<0.01), which reflects the accuracy of this model. A comparison of the proposed model and published equations revealed the superiority of the proposed equation. The advantages include the need for less data (inflow discharge, flow depth in furrow, irrigation time, and advance time) and ease of measurement of the required inputs.

کلیدواژه‌ها [English]

  • Dimensional Analysis
  • Kostiakov-Lewis Infiltration Equation
  • Surface irrigation
Abbasi, F. and Chogan, R. 2011. Investigation the effects of surface fertigation on water use efficiency, yield and yield components of corn in Karaj. Final Research Report, No. 40212. Agricultural Engineering Research Institute. (in Farsi)
Ahuja, L. R., Kozak, J. A., Andales, A. A. and Ma, L. 2007. Scaling parameters of the Lewis-Kostiakov water infiltration equation across soil textural classes and extension to rain infiltration. Trans. ASABE. 50(5): 1525-1541.
Buckingham, E. 1914. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4(4), 345-376.
Elliott, R. L. and Walker, W. R. 1982. Field evaluation of furrow infiltration and advance functions [irrigation; Colorado]. Trans. ASAE. 25, 396-400.
Elliott, R. L., Walker, W. R. and Skogerboe, G. V. 1983. Infiltration parameters from furrow irrigation advance data [Modified Kostiakov infiltration equation, soils, Colorado farms]. Trans. ASAE. 26, 1726-1731.
Enciso-Medina, J., Martin, D. and Eisenhauer, D. 1998. Infiltration model for furrow irrigation. J. Irrig. Drain. Eng. 124(2): 73-80.
Gillies, M. H. and Smith, R. J. 2005. Infiltration parameters from surface irrigation advance and run-off data. Irrig. Sci. 24(1): 25-35.
Green, W. H. and Ampt, G. A. 1911. Studies on soil physics, 1. The flow of air and water through soils. J. Agric. Sci. 4(1): 1-24.
Holtan, H. N. 1961. Concept for infiltration estimates in watershed engineering. USDA-ARS Bull. 41–51.
Hopmans, J. W. 1989. Stochastic description of field-measured infiltration data. Trans. ASAE. 32, 1987-1993.
Horton, R. E. 1941. An approach toward a physical interpretation of infiltration-capacity. Soil Sci. Soc. Am. J. 5(C): 399-417.
Karami, A., Homaee, M., Bybordi, M. and Mahmoodian Shushtari, M. 2012. Quantification of soil water infiltration parameters using scaling. Iran Water Res. J. 11(2): 65-73. (in Farsi)
Khatri, K. L. and Smith, R. J. 2006. Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrig. Sci. 25(1): 33-43.
Kostiakov, A. N. 1932. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration. Trans. 6, 17-21.
Kozak, J. A. and Ahuja, L. R. 2005. Scaling of infiltration and redistribution of water across soil textural classes. Soil Sci. Soc. Am. J. 69(3): 816-827.
Machiwal, D., Jha, M. K. and Mal, B. C. 2006. Modelling infiltration and quantifying spatial soil variability in a wasteland of Kharagpur, India. Biosys. Eng. 95(4): 569-582.
Massey, B. and Ward-Smith A. J. 2006. Mechanics of Fluids. 8th Ed. Taylor and Francis. London.
McClymont, D. J. and Smith, R. J. 1996. Infiltration parameters from optimization on furrow irrigation advance data. Irrig. Sci. 17(1): 15-22.
Miller, E. E. and Miller, R. D. 1956. Physical theory for capillary flow phenomena. J. Appl. Phys. 27(4): 324-332.
Nielsen, D. R., Hopmans, J. W. and Reichardt, K. L. A. U. S. 1998. An emerging technology for scaling field soil-water behavior. Scale Dependence and Scale Invariance Hydrology. 136-166.
Oyonarte, N. A., Mateos, L. and Palomo, M. J. 2002. Infiltration variability in furrow irrigation. J. Irrig. Drain. Eng. 128(1): 26-33.
Parchami Araghi, F., Mirlatifi, S. M., Ghorbani Dashtaki, S. and Mahdian, M. H. 2010. Evaluating some infiltration models under different soil texture classes and land uses. Iranian J. Irrig. Drain. 2(4): 193-205. (in Farsi)
Philip, J. R. 1957. The theory of infiltration: 3. moisture profiles and relation to experiment. Soil Sci. 84(2): 163-178.
Rasoulzadeh, A. and Sepaskhah, A. R. 2003. Scaled infiltration equations for furrow irrigation. Biosys. Eng. 86(3): 375-383.
Richards, L. A. 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1(5): 318-333.
Sadeghi, M. and Jones, S. B. 2012. Scaled solutions to coupled soil-water flow and solute transport during the redistribution process. Vadose Zone J. 11(4).
Sadeghi, M., Ghahreman, B. and Davari, K. 2008. Scaling and prediction of soil moisture profile during redistribution phase. J. Water Soil. 22(2): 417-431. (in Farsi)
Sadeghi, M., Gohardoust Monfared, M. R. and Ghahraman, B. 2010. Scaling of soil hydraulic conductivity function using effective capillary drive. J. Water Soil. 24(1): 189-197. (in Farsi)
Scaloppi, E. J., Merkley, G. P. and Willardson, L. S. 1995. Intake parameters from advance and wetting phases of surface irrigation. J. Irrig. Drain. Eng. 121(1): 57-70.
Sepaskhah, A. R. and Kamgar-Haghighi, A. A. 1997. Water use and yields of sugarbeet grown under every-other-furrow irrigation with different irrigation intervals. Agric. Water Manage. 34(1): 71-79.
Smith, R. J., Raine, S. R. and Minkevich, J. 2005. Irrigation application efficiency and deep drainage potential under surface irrigated cotton. Agric. Water Manage. 71(2): 117-130.
Sposito, G. (Ed.). 2008. Scale Dependence and Scale Invariance in Hydrology. Cambridge University Press.
Vico, G. and Porporato, A. 2011. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv. Water Resour. 34(2): 263-271.
Warrick, A. W. 1998. Spatial variability. In: Hillel, D. (Ed.) Environmental Soil Physics. Academic Press, San Diego, CA.
Warrick, A. W. and Hussen, A. A. 1993. Scaling of Richards' equation for infiltration and drainage. Soil Sci. Soc. Am. J. 57(1): 15-18.
Warrick, A. W., Lomen, D. O. and Yates, S. R. 1985. A generalized solution to infiltration. Soil Sci. Soc. Am. J. 49(1): 34-38.
Walker, W. R. 2003. SIRMOD III: Surface Irrigation Simulation, Evaluation and Design. Guide and Technical Documentation. Department of Biological and Irrigation Engineering. Utah State University. Logan. UT. USA.
Youngs, E. G. and Price, R. I. 1981. Scaling of infiltration behavior in dissimilar porous materials. Water Resour. Res. 17(4): 1065-1070.