نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی دانشگاه اراک

2 استاد گروه مهندسی ماشین‌های کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

یکی از مهمترین نهاده‌های کشاورزی که تأثیر زیادی در رشد گیاه، عملکرد و کیفیت محصول دارد، نیتروژن است.  حسگرهای مختلفی توسعه یافته‌اند برای آنکه وضعیت نیتروژن محصولات به شکلی غیرمخرب تشخیص داده شود.  در این تحقیق به مقایسة عملکرد حسگرهای Crop-Circle و ISARIA برای تشخیص وضعیت نیتروژن گندم زمستانه در طول دورة رشد، پرداخته شد.  حساسیت اندازه‌گیری حسگرها نسبت به وضعیت آب محصول نیز مورد ارزیابی قرار گرفت.  برای این منظور، در طول فصل زراعی 2012، در مزرعه‌ای تحقیقاتی، طرح آزمایشی بلوک‌های خرد شده تصادفی با دو تکرار اجرا شد.  تیمارها شامل چهار میزان کوددهی نیتروژن (0، 60، 120 و 240 کیلوگرم بر هکتار) و دو نوع رژیم آب‌دهی (با آبیاری تکمیلی و بدون آبیاری) بود.  بر اساس نتایج به دست آمده، حسگرهای Crop-Circle و ISARIA عملکرد بسیار خوبی برای تشخیص وضعیت نیتروژن گندم زمستانه از خود نشان دادند.  اندازه‌گیری‌های حسگر Crop-Circle تحت تأثیر وضعیت آب محصول قرار گرفت، در حالی­که حسگر ISARIA حساسیت کمی نسبت به وضعیت آب محصول نشان داد. 

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of Nitrogen Content in Winter Wheat Using Proximal Crop Sensors

چکیده [English]

Nitrogen (N) is an important agricultural input that affects plant growth, yield and quality. Different crop sensors have been developed to detect the nitrogen status non-destructively content crops. The present study compared the performance of the Crop-Circle and Isaria crop sensors to estimate the nitrogen content of winter wheat during the growing season. The sensitivity of sensor measurements to the water content of the crop was also investigated. Field testing was conducted during the 2012 growing season at Marquardt experimental station northwest of Potsdam, Germany. The experiment was designed as a randomized split block design with two replications. Treatments consisted of four N fertilization rates (0, 60, 120 and 240 kg N ha-1) and two water regimes (irrigated and non-irrigated). The results indicated that both Crop-Circle and Isaria crop sensors showed very high performance for detection of the nitrogen content of winter wheat. It was noted that the measurements by Crop-Circle were affected by the water content of the crop, but that Isaria showed low sensitivity to water content.

کلیدواژه‌ها [English]

  • nitrogen
  • Proximal Crop Sensors
  • Precision agriculture
  • Wheat
Berntsen, J., Thomsen, A., Schelde, K., Hansen, O. M., Knudsen, L., Broge, N., Hougaard, H. and Hørfarter, R. 2006. Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precis. Agric.
7, 65-83.
Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R. and Jiang, R. 2013. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 154, 133-144.
Clay, D. E., Kim, K.-I., Chang, J., Clay, S. A. and Dalsted, K. 2006. Characterizing water and nitrogen stress in corn using remote sensing. Agron. J. 98, 579-587.
Ehlert, D. and Dammer, K. H. 2006. Widescale testing of the Crop-meter for site-specific farming. Precis. Agric. 7, 101-115.
Ehlert, D., Horn, H.-J. and Adamek, R. 2008. Measuring crop biomass density by laser triangulation. Comput. Electron. Agric. 61(2):117-125.
Ehlert, D., Adamek, R. and Horn, H.-J. 2009. Vehicle based laser range finding in crops. Sensors 9, 3679-3694.
Ehlert, D., Heisig, M. and Adamek, R. 2010. Suitability of a laser rangefinder to characterize winter wheat. Precis. Agric. 11, 650-663.
Erdle, K., Mistele, B. and Schmidhalter, U. 2011. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 124, 74-84.
Gebbers, R., Ehlert, D. and Adamek, R. 2011. Rapid mapping of the leaf area index in agricultural crops. Agron. J. 103(5): 1532-1541.
Hong, S. D., Schepers, J. S., Francis, D. D. and Schlemmer, M. R. 2007. Comparison of ground‐based remote sensors for evaluation of corn biomass affected by nitrogen stress. Commun. Soil Sci. Plant Anal.
38, 2209-2226.
Jones, C. L., Maness, N. O., Stone, M. L. and Jayasekara, R. 2007. Chlorophyll estimation using multispectral reflectance and height sensing. Trans. ASABE. 50, 1867-1872.
Kirkham, B. 2004. Principles of Soil and Plant Water Relations. Elsevier Science.
LaRuffa, J. M., Raun, W. R., Phillips, S. B., Solie, J. B., Stone, M. L. and Johnson, G. V. 2001. Optimum field element size for maximum yields in winter wheat, using variable nitrogen rates. J. Plant Nutr. 24, 313-325.
Lee, K.-J. and Lee, B.-W. 2013. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis. European J. Agron. 48, 57-65.
Li, Y., Chen, D., Walker, C. N. and Angus, J. F. 2010. Estimating the nitrogen status of crops using a digital camera. Field Crops Res. 118, 221-227.
Osborne, S. L., Schepers, J. S., Francis, D. D. and Schlemmer, M. R. 2002. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron. J. 94, 1215-1221.
Pagola, M., Ortiz, R., Irigoyen, I., Bustince, H., Barrenechea, E., Aparicio-Tejo, P., Lamsfus, C. and Lasa, B. 2009. New method to assess barley nitrogen nutrition status based on image colour analysis: Comparison with SPAD-502. Comput. Electron. Agric. 65, 213-218.
Portz, G., Molin, J. P. and Jasper, J. 2012. Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precis. Agric. 13, 33-44.
Schmidt, J., Beegle, D., Zhu, Q. and Sripada, R. 2011. Improving in-season nitrogen recommendations for maize using an active sensor. Field Crops Res. 120, 94-101.
Shaver, T. M., Khosla, R. and Westfall, D. G. 2011. Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize. Precis. Agric. 12, 892-904.
Sripada, R. P., Schmidt, J. P., Dellinger, A. E. and Beegle, D. B. 2008. Evaluating Multiple Indices from a Canopy Reflectance Sensor to Estimate Corn N Requirements. Agron. J. 100, 1553-1561.
Sui, R. and Thomasson, J. A. 2006. Ground-Based sensing system for cotton nitrogen status determination. Trans. ASABE. 49, 1983-1991.
Tartachnyk, I., Rademacher, I. and Kühbauch, W. 2006. Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precis. Agric. 7, 281-293.
Thoele, H. and Ehlert, D. 2010. Biomass related nitrogen fertilization with a crop sensor. Appl. Eng. Agric.
26, 769-775.
Tilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D. and Belford, R. 2007. Remote sensing of nitrogen and water stress in wheat. Field Crops Res. 104, 77-85.
Tremblay, N., Wang, Z., Ma, B.-L., Belec, C. and Vigneault, P. 2009. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precis. Agric. 10, 145-161.
Wang, Y., Wang, D., Zhang, G. and Wang, J. 2013. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Res. 149, 33-39.
Zebarth, B. J., Rees, H., Tremblay, N., Fournier, P. and Leblon, B. 2003. Mapping spatial variation in potato nitrogen status using the N Sensor. Acta Hortic. 627, 267-273.
Zhang, N., Wang, M. and Wang, N. 2002. Precision agriculture-a worldwide overview. Comput. Electron. Agric. 36, 113-132.