نوع مقاله : مقاله پژوهشی

نویسندگان

1 آموخته کارشناسی ارشد

2 دانشیار گروه مکانیک ماشین های کشاورزی دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار گروه مکانیک ماشین های کشاورزی دانشگاه فردوسی مشهد

چکیده

تغییرات شدت نور از مشکلات موجود در دستگاه‌های مبتنی بر پردازش تصویر است.  در پژوهش حاضر به شناسایی گیاهکاهو و کلم از روی تصاویر تهیه ‌شده در شرایط متغیر نوری مزرعه با استفاده از روشی نوین پرداخته شده است.  شیوه جدید شناسایی توسط آستانه‌ای صورت می‌گیرد که در فضای اقلیدسی سه ‌بعدی قرار دارد و به‌صورت پوسته‌ای بیضی‌گون است و از مولفه روشنایی در ساختار خود استفاده می‌کند.  نتایج حاصل از به‌کارگیری این شیوه برای شناسایی تصویری گیاهان سبزرنگ در شرایط مزرعه نشان می‌دهد که شیوه پیشنهادی، نسبت به روش‌های متداول شناسایی گیاه، خطاهای نوع گیاهی، پس‌زمینه،مجموع و میانگین مربع خطای کمتری دارد.  نتایج ارزیابی شیوه پیشنهادی روی دو نمونه گیاه کاهو و کلم نشان می‌دهد که این شیوه قادر به شناسایی کلم با دقتی برابر با  26/85 درصد است و  در ترکیب این شیوه با خصوصیات شکلی برای شناسایی کاهو دقتی برابر با 67/66 درصد دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Detection of Lettuce and Cabbage from Images Taken under Different Lighting Conditions Using an Elliptic Thresholding

چکیده [English]

Variations in lighting are a problem for visual systems. In the current research, a new thresholding method using a 3D Euclidian elliptical surface was defined and applied for plant detection purposes. The results showed that this method had lower type I error, type II error, total error and mean square error compared with those of conventional segmentation methods. The method was evaluated for detection of cabbage and lettuce from images. The results showed the proposed method located cabbages in the images with 85.26% accuracy. When the proposed method was combined with image-based shape features it identified lettuce from the images at 66.67% accuracy.

کلیدواژه‌ها [English]

  • Computer vision
  • Shape-Independent Properties
  • Surface Threshold
Ahmed, F., Kabir, H., Bhuyan, S. A., Bari, H. and Hossain, E. 2012. Automated weed classification with local pattern-based texture descriptors. Int. Arab J. Info. Technol. 11(1): 87-94.
Blasco, J., Aleixos, N., Roger, J., Rabatel, G. and Molto, E. 2002. Robotic weed control using machine vision. Biosys. Eng. 83, 149-157.
Camargo, A. and Smith, J. 2009. Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agr. 66, 121-125.
Cope, J. S., Corney, D., Clark, J. Y., Remagnino, P. and Wilkin, P. 2012. Plant species identification using digital morphometrics: a review. Expert Syst. Appl. 39, 7562-7573.
Golzarian, M. R., Fielke, J. and Desbiolles, J. 2007. A novel approach to improve the plant-background segmentation in computer vision systems. National Conference: Agriculture and Engineering: Challenge Today, Technology Tomorrow. Society for Engineering in Agriculture. Australian Society of Engineering in Agriculture.Canberra. Australia.
Golzarian, M., Lee, M. K. and Desbiolles, J. 2012. Evaluation of color indices for improved segmentation of plant images. Trans. ASABE. 55, 261-273.
Gonzalez, R. C. and Richard, E. W. 2008. Digital Image Processing. 2nd Ed. Adison-Wesley, Reading.
Guo, W., Rage, U. K. and Ninomiya, S. 2013. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agr. 96, 58-66.
Kargar, B., Amir, H. and Shirzadifar, A. M. 2013. Automatic weed detection system and smart herbicide sprayer robot for corn fields. First RSI/ISM International Conference on Robotics and Mechatronics. Feb. 13-15. Tehran. Iran.
Kheng, L. W. 2002. Color spaces and color-difference equations. Color Res. Appl. 24, 186-198.
Khojastehnazhand, M., Omid, M. and Tabatabaeefar, A. 2010. Development of a lemon sorting system based on color and size. African J. Plant Sci. 4, 122-127.
Liming, X. and Yanchao, Z. 2010. Automated strawberry grading system based on image processing.  Comput. Electron. Agr. 71, S32-S39.
Meyer, G. E. and Neto, J. C. 2008. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agr. 63, 282-293.
Mizushima, A. and Lu, R. 2013. An image segmentation method for apple sorting and grading using support vector machine and Otsu’s method. Comput. Electron. Agr. 94, 29-37.
Muangkasem, A., Thainimit, S., Keinprasit, R. and Isshiki, T. 2010. Weed detection over between-row of sugarcane fields using machine vision with shadow robustness technique for variable rate herbicide applicator. Energy Res. J. 1, 141-145.
Polder, G., van der Heijden, G. W. A. M., van Doorn, J. and Baltissen, T. A. H. M. C. 2014. Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosys. Eng. 117, 35-42.
Russ, J. C. 1999. The Image Processing Handbook. 3rd Ed. Boca Raton: CRC Press.
Tang, L., Tian, L. and Steward, B. 2003. Classification of broadleaf and grass weeds using Gabor wavelets and an artificial neural network. Trans. ASAE. 46(4): 1247-1254.
Tian, L. F., Slaughter, D. C. and Norris, R. F. 2002. Machine vision identification of tomato seedlings for automated weed control. Trans. ASAE. 40(6): 1761-1768.
Wang, Z. and Zhang, D. 1999. Progressive switching median filter for the removal of impulse noise from highly corrupted images. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Trans. 46, 78-80.
Woebbecke, D., Meyer, G., Von Bargen, K. and Mortensen, D. 1995a. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE. 38, 259-269.
Woebbecke, D., Meyer, G., Von Bargen, K. and Mortensen, D. 1995b. Shape features for identifying young weeds using image analysis. Trans. ASAE. 38, 271-281.