نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری

2 دانشیار دانشگاه تهران

3 کارشناس ارشد هوش مصنوعی دانشگاه صنعتی شریف

چکیده

به­دلیل نبود مدل ریاضی و اینکه عوامل تأثیرگذار بر افت انتهای کمباین ماهیت غیر خطی دارند، در این تحقیق با بهره‌گیری از دانش شخص خبره، سیستمی هوشمند مبتنی بر کنترل‌کننده منطق فازی برای تنظیمات خودکار کمباین طراحی، پیاده‌سازی، و ارزیابی شد.  این سیستم هوشمند قادر بود بر اساس اطلاعات دریافتی از مقدار تلفات در الک‌ها و کاه‌پران‌ها به اجرای تنظیمات خودکار سرعت دورانی کوبنده، فاصلة کوبنده و ضدکوبنده، سرعت دورانی دمنده، و سرعت پیشروی دست زند.  به­منظور اجرای طرح، در ابتدا مکانیزم‌های تغییر وضعیت این واحدها در کمباین جاندیر مدل 955 از حالت مکانیکی به هیدرولیکی تغییر داده شدند.  برای این کار، چهار حسگر برای اندازه‌گیری پارامترهای کاری کمباین شامل: سرعت دورانی کوبنده، فاصلة کوبنده و ضدکوبنده، سرعت دورانی دمنده، و سرعت پیشروی و سه حسگر برای اندازه‌گیری تلفات انتهای کمباین شامل دو حسگر برای اندازه‌گیری تلفات کاه‌پران‌ها و یک حسگر برای اندازه‌گیری تلفات الک‌ها نصب شدند.  ورودی‌های سیستم شامل تلفات الک‌ها و کاه‌پران‌ها و خروجی‌های سیستم شامل سرعت دورانی کوبنده، فاصلة کوبنده و ضدکوبنده، سرعت دورانی دمنده، و سرعت پیشروی هستند.  برای هر یک از ورودی‌های سیستم سه تابع تعلق ذوزنقه‌ای و برای هر یک از خروجی‌ها، فازی­ساز منفرد در نظر گرفته شد.  برای منطق فازی در مجموع شش قاعده با اپراتور منطقی AND و موتور استنتاج مینیمم ممدانی طراحی شد.  الگوریتم طراحی شده، درون یک کنترل­کنندة منطقی برنامه‌پذیر برنامه‌ریزی و در داخل کابین کمباین تعبیه شد.  به­منظور ارزیابی سیستم، آزمون‌های میدانی متعددی در تابستان 1385 در شهرستان اراک به اجرا درآمد.  نتایج تجزیه و تحلیل آماری داده‌ها نشان می­دهد که میانگین تلفات برداشت با کمباین مجهز به منطق فازی و کمباین فاقد کنترل­کننده تفاوت معنی‌داری در سطح احتمال 1 درصد دارد. 

عنوان مقاله [English]

Implementation and Evaluation of a Fuzzy Logic Controller for the Automatic Settings of a Combine Harvester

چکیده [English]

Many factors affect yield loss in wheat harvesting with a grain combine harvester and there is no mathematical model to describe the behavior of this complex system. Thus in this study, a fuzzy logic controller (FLC) was designed, implemented and tested for the automatic settings of cylinder speed, concave clearance, fan speed and forward speed of a model 955 John Deere combine. First, the mechanical systems of these units were converted into hydraulic systems to implement the FLC. Then, seven sensors were installed to measure combine parameters (four sensors) and yield losses (three sensors). The yield loss sensors were very accurate and reliable. A fuzzy logic algorithm was proposed to control these units, with two inputs (straw walker and sieve loss) and four outputs (cylinder speed, concave clearance, fan speed and forward speed). Trapezoidal membership functions were selected as fuzzy linguistic input variables and fuzzy singletons were selected as output variables. Six rules having logical AND operators and Mamdani implications were employed. The fuzzy algorithm was implemented using a CJ1M model PLC. Laboratory and field experiments were carried out in the summer of 2006 to evaluate the performance of the proposed fuzzy inference system. Statistical analysis (t-tests) of the present investigation indicated a significant difference (p<1%) between loss mean in the combine with FLC installed and the combine without a controller.

کلیدواژه‌ها [English]

  • Combine Loss
  • Fuzzy Logic Controller
  • PLC
  • Sensor
  • Wheat
Behroozi Lar, M., Hassan Pour, M., Sadegh Nezhad, H., Asadi, A., Khosravani, A. and Saati, M. 1995. Combine harvesting loss. Agric. Engineering Research Institute. Final Research Report. Karaj. Iran. (in Farsi)
Benson, E. R., Reid, J. F. and Zhang, Q. 2000. Development of an automated combine guidance system. ASAE Annual Meeting. Paper No. 001337. St. Joseph. MI 49085-9659. USA. Paper No. 003137.
Brizgis, L. J., Nave, W. R., Paulsen, M. R. 1980. Automatic cylinder control for combines. Trans. ASAE. 23(5): 1066-1071.
Griffin, G. A. 1987. Combine harvesting, FMO. John Deer company Pub.
Hall, J. W. 1992. Emulating human process control functions with neural networks. Ph.D. Dissertation. Department of Mechanical Engineering. University of Illinois. Urbana Illinois.
Jalaei, A. and Javidi, M. 2004. Investigation of combine cleaning shoe to implementation of a fuzzy logic controler. The 3rd national conference on agricultural machinery and mechanization. Kerman. Iran. (in Farsi)
Klir, G. J. and Yuan, B. 1995. Fuzzy Sets and Fuzzy Logic theory and application. Prentice Hall, Inc. New Jersey. USA.
Krutz, G. W. and Mailander, M. P. 1983. Automatic combine. Proceeding of the 1st International Conference on Robotics and Intelligent Machines in Agriculture. Tampa. Florida. USA.
Le Flufy, M. J. and Stone, G. T. 1983. Speed control of a combine harvester to maintain a specific level of measured threshing grain loss. J. Agric. Eng. Res. 28, 537-543.
Ma, X., Karl-heinz Otto, M. and Folker, B. 2003. Harvester with intelligent hybrid control system. United States Patent. 6553300.
Maertens, K., Ramon, H. and De Baerdemaeker, J. 2002. Online monitoring system for separation processes in combine harvesters. ASAE. 701P0502. St. Joseph. MI 49085-9659. USA.
Taylor, R., Downs, W. and Stone, M. 2008. Combine operation: Loss monitors. Oklahoma cooperation extension fact sheets. Oklahoma State University. http://osufacts.okstate.edu.
Teshnelab, M., Saffar Pour, N. and Afyooni, D. 2001. Fuzzy systems and control. Khaje Nasir University. Tehran. Iran. (in Farsi)
Yan, J., Ryan, M. and Power, J. 1994. Using Fuzzy Logic:Towards Intelligent Systems. Prentice Hall, Inc. New Jersey. USA.