نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی صنایع غذایی-صنایع غذایی/دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه علوم و مهندسی صنایع غذایی-صنایع غذایی/ دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

اثر ضد میکروبی تابش مادون‌قرمز روشی نوین در فراوری مواد غذایی است. در این مطالعه، پس از تعیین بیشینۀ جذب باسیلوس سرئوس (به‌عنوان یک شاخص غذازاد) با طیف ‌سنجی مادون‌قرمز(FTIR)، تأثیر طول‌موج انتخابی مادون‌قرمز (6.26، 6.01 و 5.76 میکرومتر به ترتیب معادل با 1597.44، 1663.89 و 1736.11سانتی­متر-1)، فاصله از منبع تابش (3، 5 و 7 سانتی­متر)، مدت زمان تابش (15، 22.5 و 30 دقیقه)، و ضخامت نمونه (2، 4 و 6 میلی­متر) بر جمعیت باسیلوس سرئوس در محیط کشت مایع به روش سطح پاسخ ارزیابی گردید. بر اساس نتایج به‌دست‌آمده، معنی‌داری تأثیر تمام متغیرهای موردمطالعه (به جز ضخامت نمونه) بر کاهش جمعیت باسیلوس سرئوس در سطح 0.01>p محرز شد. اثر متقابل طول‌موج تابش مادون‌قرمز با فاصله از منبع تابش و اثر متقابل فاصله از منبع تابش با مدت زمان تابش بر کاهش جمعیت باکتری مذکور نیز معنی‌دار (0.01>p) بود. علاوه بر این، بیشترین کاهش جمعیت باسیلوس سرئوس (معادل 4.34 سیکل لگاریتمی) در تیمار حاصل از طول‌موج تابش 76/5 میکرومتر (معادل با 1736.11 سانتی­متر-1)، فاصله از منبع تابش 3 سانتی­متر، مدت زمان تابش 30 دقیقه، و ضخامت نمونه 2 میلی­متر مشاهده شده­است. از نتایج این پژوهش می‌توان برای بهینه‌یابی فرایندهای صنعتی با هدف حذف باسیلوس سرئوس با تابش مادون‌قرمز استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Selective Infrared Radiation on Inactivation of Bacillus Cereusby Response Surface Methodology

 
Dostert, K. H., O'Brien, C .P., Liu, W., Riedel, W., Savara, A., Tkatchenko, A., Schauermann, S., andFreund, H. J. 2016. Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): A combination of infrared reflection absorption spectroscopy and density functional theory studies. Surface Science.650, 149-160.
Eliasson, L., Isaksson, S., Lövenklev, M., andAhrné, L. 2015. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder. Frontiers in Microbiology. 6, 1071.
Eliasson, L., Libander, P., Lövenklev, M., Isaksson, S., andAhrné, L. 2014. Infrared Decontamination of Oregano: Effects on Bacillus cereus Spores, Water Activity, Color, and Volatile Compounds. Journal of Food Science.79(12):E2447-E2455.
Erdogdu, B.S. and Ekiz, H. I. 2011. Effect of ultraviolet and far infrared radiation on microbial decontamination and quality of Cumin seeds. Journal of Food Science.76(5):M284-M292.
Erdogdu, B.S. and Ekiz, H. I. 2013. Far infrared and ultraviolet radiation as a combined method for surface pasteurization of black pepper seeds. Journal of Food Engineering. 116(2):310–314.
European Food Safety Authority.2005. Opinion of the scientific panel on biological hazards onBacillus cereus and other Bacillus sppin foodstuffs. EFSA Journal.3(4):175.
Gao, Y.L., Ju, X.R. andJiang, H.H. 2006. Use of response surface methodology to investigate the effect of food constituents on Staphylococcus aureusinactivation by high pressure and mild heat. Process Biochemistry. 41(2):362-9.
Gharibzahedi,S.M.T., Razavi,SH. andMousavi,SM. 2012. Developing an emulsion model system containing canthaxanthin biosynthesized by Dietzia natronolimnaea HS-1. International Journal of Biological Macromolecules. 51(4):618-26.
GM,A. andDM,B. 2003. Empirical Ground-Motion Relations for Subduction-Zone Earthquakes and Their Application to Cascadia and Other Regions. Bulletin of the Seismological Society of America. 93(4):1703-29.
Griffiths.M.W. andSchraft,H. 2017. Chapter 20 -Bacillus cereusFood Poisoning. Foodborne Diseases (Third edition): Academic Press. 395-405.
Hamanaka,D., Dokan,S., Yasunaga,E., Kuroki,S., Uchino,T. andAkimoto,K. 2000. The sterilization effects of infrared ray on the agricultural products spoilage microorganisms. St Joseph: American Society of Agricultural Engineers. 1-9.
Hamanaka, D., Uchino, T., Furuse, N., Han, W., andTanaka, S. I. 2006. Effect of the wavelength of infrared heaters on the inactivation of bacterial spores at various water activities. International Journal of Food Microbiology.108(2):281-285.
Hashimoto,A., Sawai,J., Igarashi,H. andShimizu,M. 1992. Effect of Far-Infrared Irradiation on Pasteurization of Bacteria Suspended in Liquid Medium Below Lethal Temperature. Journal of Chemical Engineering of Japan. 25(3):275-81.
Helm, D., Labischinski, H., andNaumann, D. 1991. Elaboration of a procedure for identification of bacteria using Fourier-Transform IR spectral libraries: a stepwise correlation approach. Journal of Microbiological Methods.14(2):127-142.
 Jaouachi,B., Hassen,M.B. andSakli,F. 2007. Strength of wet spliced denim yarns after sizing using a central composite design. AUTEX Research Journal. 7(3):159-65.
Jun, S., andIrudayaraj, J. 2003. A Dynamic fungal inactivation approach using selective infrared heating. Transactions of the ASAE. 46(5):1407.
Kim,S.A. andRhee,M.S. 2015. Predictive model and optimization of a combined treatment of caprylic acid and citric acid for the reduction of Escherichia coliO157:H7 using the response surface methodology. International Journal of Food Microbiology. 197,9-14.
Koyuncu,T., Pinar,Y.and Lule,F. 2007. Convective drying characteristics of azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bosc.) fruits. Journal of Food Engineering.78(4):1471-1475.
Krishnamurthy,K. 2006. Decontamination of milk and water by pulsed UV-light and infrared heating.Lee,H., Song,M. andHwang,S. 2003. Optimizing bioconversion of deproteinated cheese whey to mycelia of Ganoderma lucidum. Process Biochemistry. 38(12):1685-93.
Li,C., Bai,J., Cai,Z. andOuyang,F. 2002. Optimization of a cultural medium for bacteriocin production by Lactococcus lactisusing response surface methodology. Journal of Biotechnology. 93(1):27-34.
Modest, M. F. 2013. Radiative Heat Transfer. New York: McGraw-Hill International Editions.Myers,R.H., Montgomery,D.C. andAnderson-Cook,C.M. 2016. Response surface methodology: process and product optimization using designed experiments: John Wiley & Sons.
Orikasa, T., Ono, N., Watanabe, T., Ando, Y., Shiina, T. andKoide, S. 2018. Impact of blanching pretreatment on the drying rate and energy consumption during far-infrared drying of Paprika (Capsicum annuumL.). Food Quality and Safety. 2(2):97-103.
Puente-Diaz, L., Ah-hen, K., Vega-Gálvez, A., Lemus-Mondaca, R. and Scala, K. D. 2013. Combined Infrared-Convective Drying of Murta (Ugni molinae Turcz) Berries: Kinetic Modeling and Quality Assessment. Drying Technology. 31(3):329-338.
Rosenthal,I. 2012. Electromagnetic radiations in food science: Springer Science &Business Media.Sakai,N., Hanzawa,T. 1994. Applications and advances in far-infrared heating in Japan. Trends in Food Science & Technology.5(11):357-62.
Sawai,J., Fujisawa,M., Kokugan,T., Shimizu,M., Igarashi,H., Hashimoto,A., et al. 1997. Pasteurization of Bacterial Spores in Liquid Medium by Far-Infrared Irradiation. Journal of Chemical Engineering of Japan. 30(1):170-2.
Sawai,J., Sagara,K., Igarashi,H., Hashimoto,A., Kokugan,T. andShimizu,M. 1995. Injury of Escherichia coliin physiological phosphate-buffered saline induced by far-infrared irradiation. Journal of Chemical Engineering of Japan. 28(3):294-9.
Schoeni,J.L., Wong,A.C.L. 2005. Bacillus cereusFood Poisoning and Its Toxins. Journal of Food Protection. 68(3):636-48.
Staack, N. ,Ahrné, L., Borch, E., andKnorr, D. 2008a. Effect of infrared heating on quality and microbial decontamination in paprika powder. Journal of Food Engineering.86(1):17-24.
Staack, N., Ahrné, L., Borch, E., andKnorr, D. 2008b. Effects of temperature, pH, and controlled water activity on inactivation of spores of Bacillus cereus in paprika powder by near-IR radiation. Journal of Food Engineering.89(3):319-324.
Trivittayasil,V., Tanaka,F., Hamanaka, D. andUchino,T. 2013. Inactivation Model of Mold Spores by Infrared Heating under Non-Isothermal Conditions. Food Science and Technology Research. 19(6):979-82.