نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه اراک

2 استادیار دانشگاه اراک

چکیده

در صنایع قنادی و غذایی، آرد نخودچی جایگاه شناخته شده‌ای دارد. این آرد از جمله موادی است که با انگیزه سودجویی اقتصادی در آن تقلب می‌شود. قیمت پایین آرد گندم و ضایعات لپه، در مقایسه با آرد نخودچی، باعث شده این مواد ب­عنوان مواد تقلبی رایج مصرف شوند. مطالبه روش‌های غیرمخرب سنجش کیفیت و روند روزافزون توسعه و تولید تجهیزات نوری کاربردی و قابل حمل، زمینه‌ساز این پژوهش بوده است. در تحقیق حاضر، کارایی طیف‌سنجی ناحیه طیفی 900-420 نانومتر به­ همراه تکنیک آنالیز مؤلفه‌های اصلی (PCA) و روش‌های پیش‌پردازش رایج، در تشخیص وجود آرد گندم یا آرد لپه در آرد نخودچی در اختلاط (وزنی) 5، 10، 20 و 30 درصد بررسی شد. این روش درتشخیص آرد لپه در اختلاط 30 درصد، و بالطبع در درصدهای پایین‌تر، کارآمد نبود اما در تشخیص و تفکیک نمونه‌های دارای آرد گندم در اختلاط‌های 20 و 30 درصد موفق بود و با اعمال پیش‌پردازش‌های توزیع نرمال استاندارد (SNV) یا تصحیح پخش فزاینده (MSC) در نمونه‌های 10 و 5 درصد نیز موفق بود. نتایج بررسی­ ها نشان داد که امکان طرح ­کردن شاخصی بر مبنای داده‌های طیفی برای تشخیص وجود آرد گندم در آرد نخودچی در ناحیه طیفی 480-430 نانومتر وجود دارد و از این رو امکان استفاده از روش سریع و غیرمخرب طیف‌سنجی در ناحیه 900-420 نانومتر به‌همراه تکنیک PCA به عنوان جایگزین روش‌های آزمایشگاهی وجود دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Feasibility of Detecting Chickpea Flour Adulteration by Spectroscopy (420-900 Nm) and Principle Components Analysis Technique

چکیده [English]

In the confectionary and food industries, Chickpea flour has a well-known situationand is at high risk of foodfraud when economicalissues are concerned. Low prices of wheat and split pea wastes flours compared to chick pea flour arethe reasonsthat these materials are used as common frauds. Demanding of non-destructive methods of quality evaluation and also the increasing trend of the development and production of functional and portable optical equipment were the reasons whythis research has been conducted. In this research, the potential of the spectroscopy (420-900nm) with principle components analysis technique (PCA) and common preprocessing methods to discriminate the samples of chick pea, wheat and split pea flours on 5, 10, 20 and 30% mixing percentage has been studied. The mentioned method on detection of the split pea flour at 30% mixing percentage and lower was unsuccessful but on discrimination of the wheat flour at 30 and 20% mixing percentage was successful and on detection of 5 and 10% byapplying preprocessing (SNV/MSC) was successful. The result indicatedthat there has beena possibility to define an index based on spectral data to detect the wheat flour in chick pea flour in 430-480 nm band, therefore there is a potential to replace experimental methods with fast and non-destructive spectroscopy (420-900 nm) with PCA.

کلیدواژه‌ها [English]

  • Authentication
  • Non destructive methods
  • Powdered food
Ambrose, A. and Cho, B.K. 2014. A review of technologies for detection and measurement of adulterants in cereals and cereal products. Journal of Biosystems Engineering.39(4): 357-365.
Callao, M.P. and Ruisánchez, I. 2018. An overview of multivariate qualitative methods for food fraud detection. Food Control.86,283-293.
Civelli, R., Giovenzana, V., Beghi, R., Naldi, E., Guidetti, R. and Oberti, R. 2015. A simplified, light emitting diode (LED) based, modular system to be used for the rapid evaluation of fruit and vegetable quality: Development and validation on dye solutions. Sensors.15(9): 22705-22723.
Cortés, V., Blasco, J., Aleixos, N., Cubero, S. and Talens, P. 2019. Monitoring strategies for quality control of agricultural products using visibleand near-infrared spectroscopy: A review. Trends in Food Science & Technology. 85(1):138-148.
Cozzolino, D., Cynkar, W., Shah, N. and Smith, P. 2011. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Research International.44(7): 1888-1896.
Farneti, B., Gutierrez, M.S., Novak, B., Busatto, N., Ravaglia, D., Spinelli, F. and Costa, G. 2015. Use of the index of absorbance difference (IAD) as a tool for tailoring post-harvest 1-MCP application to control apple superficial scald. Scientia Horticulturae.190,110-116.
Giovenzana, V., Beghi, R., Malegori, C., Civelli, R. and Guidetti, R. 2014. Wavelength selection with a view to a simplified handheld optical system to estimate grape ripeness. American Journal of Enology and Viticulture.65(1): 117-123.
González, M., Lobo, M.G., Méndez, J. and Carnero, A. 2005. Detection of colour adulteration in cochineals by spectrophotometric determination of yellow and red pigment groups. Food Control.16(2): 105-112.
Horn, B., Esslinger, S., Pfister, M., Fauhl-Hassek, C. and Riedl, J. 2018. Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification–Is it data preprocessing that makes the performance? Food Chemistry.257,112-119.
Innamorato, V., Longobardi, F., Lippolis, V., Cortese, M., Logrieco, A.F., Catucci, L., Agostiano, A. and De Girolamo, A. 2019. Tracing the geographical origin of lentils (Lens culinaris Medik.) by infrared spectroscopy and chemometrics. Food Analytical Methods.12(3): 773-779.