نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 عضو هیات علمی موسسه تحقیقات فنی و مهندسی کشاورزی

3 پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

نانوالیاف ‌پروتئینی با حرارت‌دهی پروتئین‌های کروی در دماهای بالاتر از دمای دناتوره‌شدن آنها و در pH اسیدی به‌دست‌می‌آیند. این ساختارها طولی در حدود 1 میکرومتر و قطری در حدود 1 تا 10 نانومتر داشته و بسیار ناهمسان‌گرد هستند. هدف اصلی این پژوهش، تولید نانوالیاف از ایزولة پروتئین‌آب‌پنیر، بررسی ویژگی‌های ظاهری و عملکردی نانوالیاف به‌منظور کاربرد آنها به‌عنوان مواداولیه تشکیل‌دهنده موادغذایی بود. نانوالیاف‌پروتئینی در دمای °C 90 درغلظت ‌mg mL-1 20 تهیه‌شدند و خواص ظاهری و عملکردی آ‌نها در‌ pHهای 2، 4 و 6 بررسی‌شد. نتایج میکروسکوپ نیروی اتمی نشان‌داد با افزایش pH، میزان پایداری و تراکم نانوالیاف تولیدشده کاهش‌‌‌می یابد. ضمن‌‌آنکه نانوالیاف در pHهای بالاتر، ظرفیت تولید و پایداری امولسیون بالاتر و درصدحلالیت بیشتری داشتند. همچنین با افزایش pH میزان شفافیت نمونه‌ها کمتر و فاکتورهای رنگ-سنجی آنها افزایش‌یافت. درعین‌حال، نانوالیاف در مقایسه با ایزوله پروتئین آب‌پنیر به‌طور معنی‌داری خواص امولسیون‌کنندگی بهتری نشان‌دادند (p <0.05). ویژگی‌های مطلوب عملکردی این نانوالیاف درمقایسه‌ با نمونه ایزولة‌ پروتئین آب‌پنیر، کاربرد آنها را به‌عنوان افزودنی بهبوددهندة ویژگی‌های محصولات‌غذایی تقویت‌می‌کند. این ترکیبات را می-توان برای اصلاح ویژگی‌های کیفی، عملکردی و تکنولوژیکی محصولات غذایی با محتوای پروتئینی بالا، غذای رژیمی، غذای بیماران، سالمندان و غذاهای کم‌کالری استفاده-کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Stability of whey protein nanofibrils at different pH

چکیده [English]

Protein nanofibers are obtained through heating the globular proteins above their denaturation temperatures at acidic pH. These structures have a length of about 1 μm and a diameter of about 1 to 10 nm and are very anisotropic. The main objective of this study was to produce nanofibrils from whey protein isolates, evaluate their appearance and functional properties in order to use them as ingredients in food.
The protein nanofibrils were prepared at 90 °C at the concentration of 20 mg mL-1 then their appearance and functional properties were evaluated at pH 2, 4, and 6. The results obtained by atomic force microscopy showed that by increasing pH, the stability and the content of the produced nanofibrils decreased. Moreover, stable nanofibrils at higher pH values showed higher emulsion capacity and stability and higher solubility percentages. Also by increasing pH, samples opacity and turbidity and color parameters were increased. Nanofibrils also showed better functional properties compared to the control sample (P <0.05). In this way, protein nanofibrils can be commercially suggested as an additive to improve functional properties of food products. Desirable functional characteristics of WPI nanofibrils compared to the unprocessed native whey protein isolate, provides the possibility of their application to improve the qualitative properties of food products and as ingredients in foods for patients and elderly people and dietary and low-calorie foods.

کلیدواژه‌ها [English]

  • Atomic Force Microscopy
  • Emulsion Capacity
  • Protein Nanofibril
  • Solubility
  • Whey Protein Isolation
Akkermans, C., Goot, A., Venema, P., Gruppen, H. and Linden, E. 2008a. Peptides are building blocks of heat induced fibrillar protein aggregates of β-lactoglobulin at pH 2.0. Biomacromol. 10, 142-154.
Akkermans, C., Goot, A., Venema, P., van der Linden, E. and Boom, R. M. 2008b. Formation of fibrillar whey protein aggregates: Influence of heat and shear treatment, and resulting rheology. Food Hydrocoll. 22, 1315–1325.
Barbut, S. and Drake, D. 1997. Effect of reheating on sodium-induced cold gelation of whey proteins. Food Res. Int. 30, 153-157.
Bolder, S. G.,Vasbinder, A. J., Sagis, L. M. C. and van der Linden, E. 2007. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation. Int. Dairy J. 17, 846–853.
Bradford, M. M. 1979. A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Bryant, C. M. and McClements, D.J. 1999. Ultrasonic spectrometry study of the influence of temperature on whey protein aggregation. Food Hydrocoll. 13, 439–444.
Cavallieri, A. L. F., Costa-Netto, A. P., Menossi, M. and da Cunha, R. L. 2007. Whey protein interactions in acidic cold-set gels at different pH values. Le Lait j. EDP Sci. 87, 535-554.
Damodaran, S. 2005. Protein stabilization of emulsions and foams. J. Food Sci. 70, 54–66.
Denkov, N.D. 2004. Mechanisms of foam destruction by oil-based antifoams. Langmuir. 20, 9463-9505.
Gao, Z., Zhao, J., Huang, Y., Yao, X., Zhang, K., Fang, Y., Nishinari, K., Philips, G. O., Jiang, F. and Yang, H. 2017. Edible pickering emulsion stabilized by protein fibrils. Part1: Effects of pH and fibrils concentration. LWT-Food Sci Technol. 76, 1-8.
Ikeda, S. and Morris, V. J. 2002. Fine-Stranded and Particulate Aggregates of Heat-Denatured Whey Proteins Visualized by Atomic Force Microscopy. Biomacromolecules. 3, 382-389.
Jagtap, R. N. and Ambre, A. H. 2006. Overview literature on atomic force microscopy (AFM): Basics and its important applications for polymer characterization. Ind. J. Eng. Mat. Sci. 13, 368-384.
Jiménez-Castaño, L., López-Fandiño, R., Olano, A. and Villamiel, M. 2005. Study on β-lactoglobulin glycosylation with dextran: effect on solubility and heat stability. Food Chem. 93, 689–695.
Jones, O., Andrew, E. D. and McClements, D. 2010. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocoll. 24, 239-248.
Kinsella, J. E. and Morr, C. V. 1984. Milk proteins: Physicochemical and functional properties. CRC Critic. Rev. Food Sci. Nut. 21, 197-262.
Klemaszewski, J. L. and Kinsella, J. E. 1991. Sulfitolysis of whey proteins: Effects of emulsion properties. J. Agric. Food Chem. 39, 1033-1036.
Komsa-Penkova, R., Koynova, R., Kostov, G. and Tenchov, B. G. 1996. Thermal stability of calf skin collagen type I in salt solutions. Biochim. et Biophys. Acta. 1297, 171-181.
Kroes-Nijboer, A., Venema, P. and van der Linden, E. 2012a. Fibrillar structures in food. Food. Func. 3, 221-227.
Kroes-Nijboer, A., Sawalha, H., Venema, P., Bot, A., Floter, E., den Adel, R., Bouwman, W. C., and van der Linden, E. 2012b. Stability of aqueous food grade fibrillar systems against pH change. Faraday Disc. 158, 125–138.
Li, C. P., Enomoto, H., Ohki, S., Ohtomo, H. and Aoki, T. 2005. Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry heating. J. Dairy Sci. 88, 4137–4145.
Loveday, S. M., Su, J., Rao, M. A., Anema, S. G. and Singh, H. 2012b. Whey protein nanofibrils: The environment−morphology− functionality relationship in lyophilization, rehydration, and seeding. J. Agri. Food Chem. 60, 5229−5236.
Mantovani, R. A., Fattori, J., Michelon, M. and Cunha, R. L. 2016. Formation and pH-stability of whey protein fibrils in the presence of Lecithin. Food Hydrocoll. 60, 288-298.
Martinez-Alvarenga, M. S., Martinez-Rodriguez, E. Y., Garcia-Amezquita, L. E., Olivas, G. I., Zamudio-Flores, P. B., Acosta-Muniz, C. H. and Sepulveda, D. R. 2014. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate - Maltodextrin conjugates. Food Hydrocoll. 38. 110-118.
McCrae, C. H., Law, A. J. R. and Leaver, J. 1999. Emulsification properties of whey proteins in their natural environment: effect of whey protein concentration at 4 and 18% milk fat. Food Hydrocoll. 389-399.
Mohammadian, M. and Madadlou, A. 2016. Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution. Food Hydrocoll. 52, 221-230.
Morr, C. V. and Ha, E. Y. W. 1993. Whey protein concentrates and isolates: Processing and functional properties. Critic. Rev. Food Sci. Nut. 33, 431-476.
Oboroceanu, D., Wang, L., Kroes-Nijboer, A., Brodkorb, A., Venema, P., Magner, E. and Auty, M. A. E. 2011. The effect of high pressure microfluidization on the structure and length distribution of whey protein fibrils. Int. Dairy J. 21, 823-830.
Oboroceanu, D., Wang, L., Magner, E. and Auty, M. A. E. 2014. Fibrillization of whey proteins improves foaming capacity and foam stability at low protein concentrations. J. Food Eng. 121, 102–111.
Pearce, K. N. and Kinsella, J. E. 1978. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique. J. Agri. Food Chem. 26, 716-723.
Rambaran, R. N. and Serpell, L. 2008. Amyloid fibrils: Abnormal protein assembly. Prion. 2, 12–17.
Rao, M., Loveday, S., Creemer, L. and Singh, H. 2009. Factors affecting rheological characteristics of fibril gels: the case of β-lactoglobulin and alpha-lactalbumin. J. Food Sci. 74(3), 47-55.
Serfert, Y., Lamprecht, C., Tan, C. P., Keppler, J. K., Appel, E., Rossier-Miranda, F. J., Schroen, K., Boom, R. M., Gorb, S., Selhuber-Unkel, C., Drusch, S. and Schwarz, K. 2014. Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. J. Food Eng. 143, 53–61.
van der Linden, E. and Venema, P. 2007. Self-assembly and aggregation of proteins. COCIS. 12, 158–165