نوع مقاله : مقاله پژوهشی

نویسنده

بخش تحقیقات فنی مهندسی - مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان

چکیده

تمایل به استفاده از انرژی خورشید و خشک‌کن‌های آفتابی برای خشک کردن مواد غذایی در حال افزایش است. مهم‌ترین ایراد این خشک‌کن‌ها، پایین بودن کارایی آنهاست. برای رفع این مشکل، در این پژوهش کالکتور و محفظه جدیدی ساخته و ارزیابی شد. پوشش دو لایه شیشه‌ای کالکتور جدید از تعدادی قطعات شیشه‌ای تشکیل شده است که نسبت به هم آرایشی پله‌ای پدید آوردند. شکاف‌های موجود بین لایه‌ها از طریق مکش هوای بیرون، باعث ورود گرمای بیشتر به درون کالکتور می‌شود. کارایی نظری و عملی خشک‌کن با خشک کردن میوه انگور ارزیابی شد.راندمان حرارتی کالکتور جدید 10 پله و شاهد در سرعت‌های کم وزش باد محیطی به ترتیب برابر 65 و 56 درصد محاسبه شد. افزایش سرعت وزش باد محیطی تا 10 متر بر ثانیه و بیشتر، راندمان حرارتی کالکتورهای مطبق را تا سطح 35 درصد کاهش می‌دهد. کاربرد کالکتور جدید صرفاً در شرایطی توصیه می‌شود که سرعت وزش باد محیط کمتر از 1 متر بر ثانیه باشد. زمان خشک شدن میوه با خشک‌کن خورشیدی به‌طور معنی‌دار و برابر 108 درصد کوتاه‌تر از زمان خشک شدن میوه با روش سنتی است. زمان لازم برای خشک شدن میوه‌های سینی میانی دستگاه، 10 تا 14 ساعت بیشتر است تا میوه‌های طبقات دیگر. از نظر پذیرش کلی، محصولات تولیدی در طبقات مختلف خشک‌کن اختلاف معنی‌داری با یکدیگر نداشتند، اما همگی به‌طور معنی‌داری برتر از محصول تولیدی به روش سنتی بودند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison of the Performance of a Compatible and Simple Collector In Solar Dryers (Case Study: Grape Dryer)

چکیده [English]

The application of solar energy and sun dryers in food drying is increasing. Low efficiency is the main problem of this apparatus. To solve this problem, a new heat collector and drying chamber were made and assessed. The cover of the collectors was double glazed and consist of many slats and assembled in such a way that it formed a stair step fashion and made many slots through which inlet air was sucked into the collector to reduce total heat loss. The theoretical and practical efficiency of the dryer was calculated during the grape drying. The thermal efficiency of the new 10-step collector and control at low ambient wind speeds was calculated to be 65% and 56%, respectively. Increasing the ambient wind speed to 10 meters per second and more reduced the thermal efficiency of the matching collectors to 35%. The use of the new collector is recommended only if the ambient wind speed is less than 1 meter per second. The drying time of grape in the solar dryer was significantly - around %108 - shorter than that at similar time for the sun-drying method. The time required for fruit drying in the middle tray was 10 to 14 hours longer than that in other trays. In terms of overall acceptance, the raisins produced at different trays of solar dryer had a similar quality, but all were significantly superior to the traditional (sun-dried) product.

کلیدواژه‌ها [English]

  • Drying speed
  • Multi-stair solar energy collector
  • Quality
  • Sun dryer
  • Thermal efficiency
Adarsh, A. M. and Venugopal, T. 2018. Solar power drying system: A comprehensive assessment on types, trends, performance and economic evaluation. International Journal of Ambient Energy. 15(7): 103-119.
AOAC. 2005. Official Methods of Analysis. Association of Official Analytical Chemists. Published by the AOAC. International 18th Ed. Washington, D.C.
Anon. 2003. A brief history of solar energy. Available at: http://www.fao.org/inpho/isma. Accessed: 12 Jul 2017.
Anon. 2009. Solar dryers. Available at: http://www.fao.Org/inpho/vlibrary/t0073e/. Accessed 17 Mar 2015.
Anon. 2001. Solar energy for food dryers. Reading list 2001. ERCE. Energy efficiency and renewable energy clearinghouse. Available at: http://www.eren.doe.gov/. Accessed: 4 Aug 2018.
Bal, L. M., Satya, s. and Naik, S. N. 2010. Solar dryer with thermal energy storage systems for drying agricultural food products: A review. Renewable and Sustainable Energy Reviews. 14(8): 2298–2314.
Barnwal, P., and Tiwari, G.N. 2014. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy 82(12): 1131-1144.
Çerçi, K.N. and Das, M. 2019. Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems. Sustainability. 11(8): 5127- 5139.
Dahlenburg, A. P. 1998. Relationship of drying ratio and dried fruit quality with different temperature of SO2 pretreatment. Available at: http: //www. Sardi.sa.gov.au/R/7/98. Last Accessed: 10 Mar 2018.
Demir, V., Gunhan, T., Yagcioglu, A.K. and Degirmencioglu, A. 2004. Mathematical modeling and the determination of some quality parameters of bay leaves dryer. Biosystems Engineering. 88(3): 325-335.
Deshmukh, A.W., Wasewar, K. L. and Verma, M. N. 2011. Solar drying of food materials as an alternative for the energy crisis and environmental protection. International Journal of Chemical Sciences. 9(3): 1175–1182.
Duffie, J. A. and Beckman, W. A. 1991. Solar Engineering of the Thermal Process. John Wiley and Sons, New York.
Duncan, G. A., and Lower. Jr, O. J. and Colliver, D. G. 1981. Simulation of energy flows in a greenhouse. Transaction of ASAE. 24 (4): 1014-1021.
Elnamer, M. K., El-Sheikha, A. and Mosad, G. 2018. Comparison of drying characteristics of seedless grapes (vitis vinifera L.) using solar dehydrator and natural-sun-dehydration. Journal of Soil Sciences and Agricultural Engineering. 9(11): 587-595.
El-Sebaii, A. A., Aboul-Enein, S., Ramadan, M. R. I. and Gohary, H. G. E.L. 2002. Experimental investigation of an indirect type of natural convection solar dryer. Energy Conversion & Management. 43(16): 2251-2266.
Fuller, R. J. 1998. Solar frying of horticultural produce: Present and future prospects. Postharvest News and Information. 4(3): 131-136.
Ghobadian, B. 2002. Solar Dryers. Tarbiat Modares University. Tehran, Iran (In Persian).
Jaira, K. S., Singh, S. P. and Srikant, K. 2009. A review of solar dryers developed for grape drying. Solar Energy. 83(9): 1698-1712.
Janjaia, S., Srisittipokakuna, N. and Balab, B. K. 2008. Experimental and modeling performances of a roof-integrated solar drying system for drying herbs and spices. Journal of Energy. 33(2): 91–103.
Khalil, E. J., Al-Juamily, A. J., Khalifa, N. and Yassen, T. A. 2007. Testing of the performance of a fruit and vegetable solar drying system in Iraq. Journal of Desalination. 9(3): 163–170.
Moss, R.W., Henshall, P. and Arya, F. 2018. Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT, and PV panels. Applied Energy. 21 (4): 588–601.
Payan, R. (2003). Principles of Quality Control in the Food Industry. Tehran, Iran. (In Persian).
Pravin, A., Rushikesh, K. and Govind, U. 2017. Design and development of solar air dryers for raisin. Journal of Emerging Technologies and Innovative Research. 4(4): 115-117.
Pryor, T. 2003. Solar Dryers. Murdoch University Energy Research Institute. Report No: 4106-7. Murdoch, W. A. 6150. Australia.
Rachmat, R. 1996. Study on the solar desiccant system for paddy drying. (MSc. Thesis), Faculty of Agricultural Engineering, Kyoto University, Kyoto, Japan.
Rachmat, R. and Horibe, K. 1999. Solar heat collection characteristics of a fiber-reinforced plastic drying house. Transaction of ASAE 42(1): 149-157.
Saleh, T. 2002. Study of indirect type of solar dryer. (Undergraduate Thesis), Food Engineering, B.U.E.T.
Sharma, V. K., Colangelo, A. and Spagna, G. 1993. Experimental performance of an indirect type solar fruit and vegetable dryer. Energy Conversion & Management. 34 (4): 293-308.