نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، دانشگاه فردوسی مشهد

2 استاد گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

در این تحقیق، اثر چربی (در دامنه 0.2 تا 5.8 درصد) و دما (در دامنه 5 تا 35 درجه سلسیوس) بر ویسکوزیته، دانسیته، رنگ و افت فشار ناشی از اصطکاک به ازای واحد طول لوله خط جریان شیر شتر بررسی و با استفاده از روش سطح پاسخ (در قالب طرح مرکبمرکزی) مدلسازی شد. نتایج آنالیز داده‌های دانسیته نشان داد که با افزایش میزان چربی، دانسیته نمونه‌ها در همه بازه‌های دمایی مورد آزمون کاهش یافته است. افزایش دما نیز منجر به کاهش دانسیته نمونه‌های حاوی چربی بالا شد، ولی بر نمونه حاوی 0.2 درصد چربی اثر چندانی نداشت. نتایج بررسی ویسکوزیته نشان داد که افزایش دما منجر به کاهش ویسکوزیته نمونه‌های حاوی چربی بالا شد. با افزایش میزان چربی، ویسکوزیته نمونه‌ها افزایش یافت که البته افزایش ویسکوزیته ناشی از افزایش چربی در دماهای پایین بسیار بیشتر بود تا در دماهای بالا. نتایج حاصل از اندازه‌گیری رنگ نیز نشان داد که با افزایش چربی، تنها شاخص *b نمونه‌ها به طور معنی‌دار افزایش یافته است و دما اثر معنی‌داری بر سایر شاخص­های رنگی نداشت. بر اساس نتایج آنالیز واریانس، هیچ یک از اثرهای خطی، درجه دوم و متقابل چربی و دما بر افت فشار ناشی از اصطکاک طول لولهنمونه‌ها معنی‌دار (p> 0.05) نبود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling the Physical Properties (Viscosity, Density and Color) of Camel Milk as a Function of Fat Content and Temperature

چکیده [English]

In this study, the effects of fat content (0.2-5.8%) and temperature (5-35°C) on viscosity, density, color, and the friction pressure drop per unit length of pipe flow of camel milk were investigated by using response surface methodology (RSM) based on the central composite design (CCD). The results showed that increasing the fat content decreased the density of samples with high-fat content, while increasing the temperature decreased the density, but it had no effect on samples with 0.2% fat. The results of the viscosity analysis also showed that increasing the temperature decreased the viscosity of samples containing high-fat. Also, the viscosity of the samples increased with increasing the fat content, although the increase in viscosity by increase in fat at low temperatures was much higher than that at high temperatures. The results of color measurement also showed that increasing in fat content increased only b* parameter and temperature had no significant effect on other color parameters. According to the results of ANOVA, none of the linear, quadratic and interaction effects of fat and temperature on the friction pressure drop per unit length of pipe were significant (p> 0.05).

کلیدواژه‌ها [English]

  • Camel milk
  • Density
  • Modeling
  • Pressure loss
  • Viscosity
AOAC. 1975. Official Methods of Analysis. 12th Ed. Association of Official Analytical Chemists. Washington, DC.
Attia, H., Kherouatou, N., Nasri, M. and Khorchani, T. 2000. Characterization of the dromedary milk casein micelle and study of its changes during acidification. Le Lait. 80(5): 503-515.
Bakshi, A.S. and Smith, D.E. 1984. Effect of Fat Content and Temperature on Viscosity in Relation to Pumping Requirements of Fluid Milk Products1. Journal of Dairy Science. 67(6): 1157-1160.
Dennis R. Heldman, Daryl B. L. and Cristina, S. 2019. Handbook of Food Engineering 3rd Ed. CRC Press.
EI-Erian, A.F.M. 1979. Studies on camel milk in the Kingdom of Saudi Arabia. Proceeding 2nd Arab Conference Food Science Technology, Saudi Arabia.
El-Agamy, E. I. 2000. Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: A comparison with cows’ and buffalo milk proteins. Food Chemistry. 68, 227–232.
FAO. 2008. Camel milk. Available at: http://www.fao.org/ag/againfo/themes/en/dairy/camel.html.
Farah, Z. 1996. Camel milk properties and products. St. Gallen, Switzerland: SKAT, Swiss Centre for Developments Cooperation in Technology and Management.
Fox, P. F., Uniacke-LoweP. T., McSweeney, L. H. and O'Mahony, J. A. 2015. Dairy Chemistry and Biochemistry. Springer International Publishing Switzerland.
Hagrass, A. E., Hssan, A. A., Soryal, K. A., Mervat, A. S. and El-Shabrawy, S. A. 1987. Chemical compostion of fat and butter of camel’s milk. Egyptian Journal of Food Sciences. 15, 15-25.
Hassan, A. A., Hagrass, A. E., Soryal, K. A. and El-Shabrawy, S. A. 1987. Physicochemical properties of camel milk during lactation period in Egypt. Journal of Food Sciences. 15, 1-14.
Hilker, L.D. and Caldwell, W.R., 1961. A method for calculating the weight per gallon of fluid dairy products. Journal of Dairy Science. 44(1): 183-188.
Hubbard, R. and Brown, G. 1943. Rolling ball viscometer. Industrial & Engineering Chemistry Analytical Edition. 15(3): 212-218.
Indra, R. and Erdenebaatar, B. 1998. Camel’s milk processing and its consumption patterns in Mongolia. In: Actes du colloque, Dromadaires et chameaux, animaux laitiers/Dromedaries and camels, milking animals, P. Bonnet, CIRAD Publ., Nouakchott, Mauritania.pp. 257-261.
Jenness, R. 1988. Composition of milk. In: Wong, NP., Jenness, R., Keeney, M. and Marth, E.H. (Eds.). Fundamentals of Dairy Chemistry. 3rd Ed. Chapter 1. Vm Nostrand Reinhold Company, New York.
Kashaninejad, M., Razavi, S.M.A., Mazaheri Tehrani, M. and Kashaninejad, M. 2017a. Effect of extrusion conditions and storage temperature on texture, colour and acidity of butter. International Journal of Dairy Technology. 70(1): 102-109.
Kashaninejad, M., Razavi, S. M. A., Mazaheri Tehrani, M. and Kashaninejad, M. 2017b. Fatty acid composition, rheological and thermal properties of butter from sheep’s and omega-3 cow’s milks. Iranian Food Science and Technology Research Journal. 13(46): 735-4161.
Kashaninejad, M. and Razavi, S. M. A. 2020. The effect of addition of sage seed gum, carboxyl methyl cellulose and fat content on low-fat camel milk cream properties. Innovation in Food Science and Technology. in press (in Persian).
Kessler, H.G. 1981. Food Engineering and Dairy Technology. Verlag A. Kessler, Freising, Germany.
Khan, M. K. U. and Appanna, T. C. 1967. Carotene and vitamin A in camel milk. Indian Journal of Nutrition and Dietetics. 4, 17.
Khanna, N.D. and Rai, A.K. 1993. Milk production potential of Indian camel. Asian Livestock 18:19-21.
Kherouatou, N., Nasri, M. and Attia, H. 2003. A study of the dromedary milk casein micollo and its changes during acidification. Brazilian Journal of Food Technology. 6, 237e244.
Landau, S. and Everitt, B.S. 2003. Handbook of Statistical Analyses Using SPSS. Taylor and Francis
Mehaia, M. A., Hablas, M. A., Abdel-Rahman, K. M. and El-Mougy, S. A. 1995. Milk composition of Majaheim, Wadha and Hamra camels in Saudi Arabia. Food Chemistry. 52, 115-122.
Ohri, S. P. and Joshi, B. K. 1961. Composition of milk of camel. The Indian Veterinary Journal 38, 514-516.
Omar, A. Al haj and Hamad, A. Al Kanhal. 2010. Compositional, technological and nutritional aspects of dromedary camel milk. International Dairy Journal 20(12): 811-821.
Paquot, C. and Hautfenne, A. 1987. Standard Methods for the Analysis of Oils, Fats and erivatives, 7th Edn., Blackwell ScientiWc Publications, Oxford.
Phipps, L. W. 1969. The interrelationships of the viscosity, fat content and temperature of cream between 40 ° and 80°C. Journal of Dairy Research. 36(3): 417-426.
Richmond, H.D. 1953. "De Chemistry". p. 110. C. Griffin and Co. Ltd., London
Short, A.L. 1955. The temperature coefficient of expansion of raw milk. Journal of Dairy Research. 22 (1): 69-73.
Toledo, R. T. 2006. Fundamentals of Food Process Engineering. Third Edition, Springer.
Truong, T., Palmer, M., Bansal, N. and Bhandari, B. 2016. Effect of milk fat globule size on the physical functionality of dairy products. Cham, Switzerland: Springer.
Yoganandi, J, Mehta, B., Wadhwani, K., Darji, V and Aparnathi, K. 2015. Comparison of physico-chemical properties of camel milk with cow milk and buffalo milk. Journal of Camel Practice and Research. 21(2): 253-258.