نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه علوم و صنایع‌غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران

2 گروه صنایع غذایی- مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی

3 گروه صنایع غذایی، دانشگاه آزاداسلامی قوچان

چکیده

برای بهینه‌یابی شرایط استخراج بتاسیانین از چغندر قرمز (Beta vulgaris) با استفاده از روش سطح پاسخ، سه متغیر مستقل دما (40، 60 و 80 درجه سلسیوس)، زمان (20، 40 و 60 دقیقه) و فشار (90، 135 و 180 بار) برای مدل‌سازی به­کار گرفته شد و پس از آن از طرح باکس-بنکن استفاده گردید. بهینه‌یابی شرایط استخراج بر مبنای حداکثر راندمان استخراج، بیشترین مقدار ترکیبات فنلی، بیشترین مقدار بتاسیانین و کمترین شاخص IC50 تعیین شد. نتایج بررسی­ها نشان داد که افزایش دما (از 40 تا 80 درجه سلسیوس)، زمان (از 20 تا 60 دقیقه) و فشار (از 90 تا 135 بار) به‌طور معنی‌داری (0.05>p) راندمان استخراج را افزایش می­دهند. افزایش فشار از 90 تا 135 بار، دما از 40 تا 60 درجه سلسیوس و زمان استخراج از 20 تا 60 دقیقه به‌طور معنی‌داری (0.05>p)( سبب افزایش مقدار فنل کل، فعالیت آنتی­اکسیدانی و مقدار بتاسیانین عصاره گردید. شرایط بهینه استخراج دی‌اکسیدکربن فوق بحرانی در دمای 58.74 درجه سلسیوس، زمان استخراج 60 دقیقه در فشار 132.99 بار برای عصاره چغندر قرمز انتخاب شد. تحت این شرایط راندمان استخراج 1.87، ترکیبات فنلی 35.67، فعالیت آنتی اکسیدانی 0.12 و مقدار بتاسیانین 3.43 به‌دست آمد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimization of Extraction Conditions of Betacyanine from Red Beet Using Supercritical Fluid by Response Surface Methodology

چکیده [English]

Optimization of extraction conditions of bioactive compounds from red beet (Beta vulgaris) was performed using response surface methodology. For this purpose, three independent variables were temperature (40, 60, and 80 °C), time (20, 40, and 60 min) and pressure (90, 135 and 180 bar) for modeling and then optimization using Box–Behnken design. Optimization of extraction conditions was determined based on maximum extraction efficiency, maximum total phenolic content, maximum betacyanine content, and lowest IC50 index. The results showed that increasing the temperature (from 40 to 80 °C), time (from 20 to 60 min), and pressure (from 90 to 135 bar) increased extraction efficiency significantly (p<0.05). Also, increasing the pressure from 90 to 135 bar, the temperature from 40 to 60 °C and the extraction time from 20 to 60 min significantly increased total phenolic content, antioxidant activity and betacyanine content of the extract (p<0.05). For red beet extract, the optimum conditions for supercritical carbon dioxide extraction were 58.74 °C and 60 minutes of extraction at 133.99 bar.Under these conditions, extraction efficiency was 1.87, phenolic compounds were 35.67, antioxidant activity was 0.12, and betacyanine content was 3.34.

کلیدواژه‌ها [English]

  • Antioxidant
  • Beta cyanine
  • Box–Behnken design
  • Edible color
 
Ahmadian-Kouchaksaraie, Z. and Niazmand, R. 2017. Supercritical carbon dioxide extraction of antioxidants from Crocus sativus petals of saffron industry residues: Optimization using response surface methodology. The Journal of Supercritical Fluids. 121, 19-31.
‏Azeredo, H. M. 2009. Betalains: properties, sources, applications, stability–a review. International Journal of Food Science Technology. 44(12): 2365-2376.
Borges, M. E., Tejera, R. L., Díaz, L., Esparza, P. and Ibáñez, E. 2012. Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chemistry. 132(4): 1855–1860.
Cardoso-Ugarte, G. A., Sosa-Morales, M. E., Ballard, T., Liceaga, A. and San Martín-González, M. F. 2014. Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT-Food Science Technology. 59(1): 276-282.
Coelho, J. P., Cristino, A. F., Matos, P. G., Rauter, A. P., Nobre, B. P., Mendes, R. L., ... Sovová, H. and  Palavra, A.F. 2012. Extraction of volatile oil from aromatic plants with supercritical carbon dioxide: experiments modeling. Molecules. 17(9):10550-10573.
Delgado-Vargas, F., Jiménez, A. R. and Paredes-López, O. 2000. Natural pigments: carotenoids, anthocyanins, betalains—Characteristics, biosynthesis, processing, stability. Critical Reviews in Food Science Nutrition. 40(3): 173–289.
Derrien, M., Aghabararnejad, M., Gosselin, A., Desjardins, Y., Angers, P., Boumghar, Y. 2018. Optimization of supercritical carbon dioxide extraction of lutein chlorophyll from spinach by-products using response surface methodology. LWT. 93, 79-87.
Ghoreishi S. and Sharifi S. 2001. Modeling of Supercritical Extraction of Mannitol from Plane Tree Leaf. Journal of Pharmaceutical Biomedical Analysis. 24(5): 1037-48.
Ghoreishi S., Shahrestani R. G. and Ghaziaskar H. S. 2009. Experimental Modeling Investigation of Supercritical Extraction of Mannitol from Olive Leaves. Chemical Engineering Technology. 32(1): 45-54.
Ghoreishi S. and Heidari E. 2012. Extraction of Epigallocatechin Gallate from Green Tea via Modified Supercritical CO2: Experimental, Modeling Optimization. The Journal of Supercritical Fluids. 72, 36-45.
Herbach, K. M., Stintzing, F. C. and Carle, R. 2006. Betalain stability degradation—structural chromatic aspects. Journal of Food Science. 71(4): R41-R50.
Herrera, M. C. and De Castro, M. L. 2005. Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation photodiode array ultraviolet detection. Journal of Chromatography A. 1100(1):1-7.
Heydari Majd, M. H., Rajaei, A., Bashi, D. S., Mortazavi, S. A. and Bolourian, S. 2014. Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Industrial Crops Products. 57, 195-202.
Fakhari A. R. and Baghipour S. 2010. Eextraction of a food colorant from red beet evaluation of its stability. Journal of Color Science Technology. 3, 243-250.
Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen, M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural Food chemistry. 47, 3954−3962.
Kassama, L. S., Shi, J. and Mittal, G. S. 2008. Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Separation Purification Technology. 60(3): pp.278-284.
Lang, Q. and Wai, C. M. 2001. Supercritical fluid extraction in herbal natural product studies—a practical review. Talanta. 53(4): 771-782.
Lu, X., Wang, J., Al-Qadiri, H. M., Ross, C. F., Powers, J. R., Tang, J. and Rasco, B. A. 2011. Determination of total phenolic content antioxidant capacity of onion (Allium cepa) shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry. 129(2): 637-644.
Luo, H., Cai, Y., Peng, Z., Liu, T. and Yang, S. 2014. Chemical composition and in vitroevaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chemistry Central Journal. 8(1): 1-7.‏
Ma, Y. Q., Chen, J. C., Liu, D. H. and Ye, X. Q. 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrasonics Sonochemistry. 16(1): 57-62.
Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M. and Hirose, T. 2006. Extraction of astaxanthin from Haematococcus p luvialis using supercritical CO2 ethanol as entrainer. Industrial Engineering Chemistry Research. 45(10): 3652-3657.
Macías-Sánchez, M. D., Mantell, C., Rodríguez, M., de la Ossa, E. M., Lubián, L. M. and Montero, O. 2007. Supercritical fluid extraction of carotenoids chlorophyll a from Synechococcus sp. The Journal of Supercritical Fluids. 39(3): 323-329.
Maran, J. P., Priya, B. and Manikan, S. 2014. Modeling optimization of supercritical fluid extraction of anthocyanin phenolic compounds from Syzygium cumini fruit pulp. Journal of Food Science Technology. 51(9): 1938-1946.
Monrad, J. K., Howard, L. R., King, J. W., Srinivas, K. and Mauromoustakos, A. 2010. Subcritical solvent extraction of anthocyanins from dried red grape pomace. Journal of Agricultural Food Chemistry. 58(5): 2862-2868.
Moßhammer, M. R., Stintzing, F. C. and Carle, R. 2005. Development of a process for the production of a betalain-based colouring foodstuff from cactus pear. Innovative Food Science Emerging Technologies. 6(2): pp.221-231.
Nematollahi A., Mashayekh M., Sohrabvi S. and Khosravi-Darani K. 2013. Application of supercritical CO2 in extraction refining of vegetable oils. Iranian Journal of Nutrition Sciences Food Technology. 7(4): 35-44.
Paes, J., Dotta, R., Barbero, G. F. and Martínez, J. 2014. Extraction of phenolic compounds anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 pressurized liquids. The Journal of Supercritical Fluids. 95, 8-16.
Prasad, K. N., Hassan, F. A., Yang, B., Kong, K. W., Ramanan, R. N., Azlan, A. and Ismail, A. 2011. Response surface optimisation for the extraction of phenolic compounds antioxidant capacities of underutilized Mangifera pajang Kosterm peels. Food Chemistry. 128(4): 1121-1127.
Predes, F. S., Ruiz, A. L., Carvalho, J. E., Foglio, M. A. and Dolder, H. 2011. Antioxidative in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complementary Alternative Medicine. 11(1): 25.
Ravichran, K., Ahmed, A. R., Knorr, D. and Smetanska, I. 2012. The effect of different processing methods on phenolic acid content antioxidant activity of red beet. Food Research International. 48(1): 16-20.
Roussos, P. A. 2011. Phytochemicals antioxidant capacity of orange (Citrus sinensis (l.) Osbeck cv. Salustiana) juice produced under organic integrated farming system in Greece. Scientia Horticulturae. 129(2): 253-258.
Sheibani, A. and Ghaziaskar, H. S. 2009. Pressurized fluid extraction for quantitative recovery of aflatoxins B1 B2 from pistachio. Food Control. 20(2): 124-128.
Shrigod, N. M., Pit, P. D. and Fenn, B. N. 2016. Use of Supercritical Fluid Extraction in Food Processing Indusrty: A Review. Advances in Life Sciences. 5(11): 4395-4404.
Silva, S., Costa, E. M., Calhau, C., Morais, R. M. and Pintado, M. E. 2017. Anthocyanin extraction from plant tissues: a review. Critical Reviews in Food Science Nutrition. 57(14): 3072-3083.
Sonsuzer, S., Sahin, S. and Yilmaz, L. 2004. Optimization of supercritical CO2 extraction of Thymbra spicata oil. The Journal of Supercritical Fluids. 30(2): 189-199.
Sowbhagya, H. B., Sampathu, S. R. and Krishnamurthy, N. 2004. Natural colorant from marigold-chemistry technology. Food Reviews International. 20(1): 33-50.
Sumaya-Martínez, M. T., Cruz-Jaime, S., Madrigal-Santillán, E., García-Paredes, J. D., Cariño-Cortés, R., Cruz-Cansino, N., ... and Alanís-García, E. 2011. Betalain, acid ascorbic, phenolic contents antioxidant properties of purple, red, yellow white cactus pears. International Journal of Molecular Sciences. 12(10): 6452-6468.
Sun, M. and Temelli, F. 2006. Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. The Journal of Supercritical Fluids. 37(3): 397-408.
Talmaciu, A. I., Volf, I. and Popa, V. I. 2015. Supercritical fluids ultrasound assisted extractions applied to spruce bark conversion. Environmental Engineering Management Journal. 14(3): 615-623.
Uquiche, E., Cirano, N. and Millao, S. 2015. Supercritical fluid extraction of essential oil from Leptocarpha rivularis using CO2. Industrial Crops Products. 77, 307-314.
Vági, E., Simándi, B., Vásárhelyiné, K. P., Daood, H., Kéry, Á., Doleschall, F. and Nagy, B. 2007. Supercritical carbon dioxide extraction of carotenoids, tocopherols sitosterols from industrial tomato by-products. The Journal of Supercritical Fluids. 40(2): 218-226.
Vatai, T., Škerget, M. and Knez, Ž. 2009. Extraction of phenolic compounds from elder berry different grape marc varieties using organic solvents /or supercritical carbon dioxide. Journal of Food Engineering. 90(2): 246-254.
Zhang, S., Zu, Y. G., Fu, Y. J., Luo, M., Liu, W., Li, J. and Efferth, T. 2010. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresource Technology. 101(7). 2537-2544.‏