نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

واکنش میلارد یا قهوه‌ای شدن غیرآنزیمی معمولاً در فرایندهای حرارتی، نگهداری و ... در فراورده‌های غذایی رخ می‌دهد و آنچه از این واکنش به دست می‌آید در این فراورده‌ها باقی می‌ماند. تولیدکنندگان محصولات غذایی اغلب از محصولات تولیدی در واکنش میلارد برای بهبود رنگ، بافت و افزایش عطر و طعم باهدف افزایش دلپذیری و محبوبیت فراورده‌های غذایی استفاده می‌کنند. محصولات تولیدی در واکنش میلارد به غیر از جنبه‌های مثبت، آثار جهش‌زایی، سرطان‌زایی و سیتوتوکسیک نیز دارند. آکریل‌آمید، فوران و 5- هیدروکسی متیل فورفورال از ترکیبات بالقوه زیان‌آور حاصل از واکنش میلارد شناسایی شده‌اند. گروه‌های غذایی متنوعی که از لحاظ ترکیبات توکسینوژنیک ارزیابی شده‌اند غالباً مصرف بالایی در جوامع انسانی دارند، از این رو استراتژی‌های کاهش این ترکیبات باید در اولویت فرایند تولید محصولات غذایی قرار گیرند. این مقاله مروری است بر ترکیبات ضد تغذیه‌ای حاصل از واکنش میلارد در محصولات غذایی صنعتی و سنتی کشورهای مختلف.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of the Maillard Reaction Anti-nutritional Compounds in Industrial and Traditional Food Products of Different Countries

نویسندگان [English]

  • Adele Mohamadi 1
  • Mohammad Ghorbani 2

1 Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran.

2 Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran.

چکیده [English]

Maillard reaction, or non-enzymatic browning, usually occurs during the thermal processing, storage, and other food processing operations, which can lead to the formation and retaining of Maillard reaction/non-enzymatic products reaction in foods. Food producers usually implement Maillard 's reaction products to improve the color, texture, and aroma of the various food products, leading to high acceptability and popularity. Nevertheless, the Maillard reaction products may induce mutagenic, carcinogenic, and cytotoxic effects; for instance, Acrylamide, furan, and 5-Hydroxymethyl furfural are identified as potential harmful Maillard-forming compounds. Different groups of food products which are analyzed toxinogenetically, have a high consumption rate in the human societies and therefore the strategies for the minimization of these compounds should be prioritized in the production process of food products. Thus, in this revision, the antinutritional compounds produced via the Maillard reaction in industrial and traditional food products of different countries are studied.

کلیدواژه‌ها [English]

  • Maillard
  • Food products
  • Acrylamide
  • Furan
  • 5-Hydroxymethyl furfural
Al-Dmoor, H. M. 2005. Determination of acrylamide levels in selected traditional foodstuffs and drinks in jordan. Journal of Food, Agriculture & Environment. 3(2): 77-80.
Alizabeh, M., Rahimzadeh, N. and Kheirouri, S. 2015. Determination of 5-hydroxymethylfurfural in frequently consumed dried fruits in iran. Journal of Food technology and Nutrition. 12(4): 69-76.
Alsubot, S., Aldiab, D. 2019. 5-hydroxymethylfurfural levels in coffee and study of some effecting factors. Research Journal of Pharmacy and Technology. 12(9): 4263-4268.
Altaki, M. S., Santos, F. J. and Galceran, M. T. 2007. Analysis of furan in foods by headspace solid-phase microextraction–gas chromatography–ion trap mass spectrometry. Journal of Chromatography A. 1146(1): 103-109.
Alyousef, H. A., Wang, H., Al-Hajj, N. Q. M. and Koko, M. Y. 2016. Determination of acrylamide levels in selected commercial and traditional foods in syria. Tropical Journal of Pharmaceutical Research. 15(6): 1275-1281.
Anese, M. and Suman, M. 2013. Mitigation strategies of furan and 5-hydroxymethylfurfural in food. Food Research International. 51(1): 257-264.
Arisseto, A.P., Toledo, M.C., Govaert, Y., Loco, J.V., Fraselle, S., Weverbergh, E. and Degroodt, J.M. 2007. Determination of acrylamide levels in selected foods in brazil. Food Additives & Contaminants. 24(3): 236-241.
Arisseto, A.P., Vicente, E., Furlani, R.P.Z., Ueno, M.S., Pereira, A.L.D. and Toledo, M.C.F. 2012. Occurrence of furan in commercial processed foods in brazil. Food Additives & Contaminants: Part A. 29(12): 1832-1839.
Arribas-Lorenzo, G. and F. Morales. 2009. Dietary exposure to acrylamide from potato crisps to spanish population. Food Additives and Contaminants. 26(3): 289-297.
Bastos, D. M., Monaro, É., Siguemoto, É. and Séfora, M. 2012. Maillard reaction products in processed food: pros and cons. INTECH Open Access Publisher.‏
Bononi, M. and F. Tateo. 2009. Determination of furan by headspace solid-phase microextraction–gas chromatography–mass spectrometry in balsamic vinegars of modena (Italy). Journal of Food Composition and Analysis. 22(1): 79-82.
Borda, D. and Alexe, P . 2011. Acrylamide levels in food. Romanian Journal of Food Science. 1(1): 3-15.
Boroushaki, M. T., Nikkhah, E., Kazemi, A., Oskooei, M. and Raters, M. 2010. Determination of acrylamide level in popular iranian brands of potato and corn products. Food and Chemical Toxicology. 48(10): 2581-2584.
Gündüz, C. P. B., Bilgin, A. K. and Cengiz, M. F. 2017. Acrylamide contents of some commercial crackers, biscuits and baby biscuits. Akademik Gıda. 15(1): 1-7.
Boyacı Gündüz, C. P. and Cengiz, M. F. 2015. Acrylamide contents of commonly consumed bread types in turkey. International Journal of Food Properties. 18(4): 833-841.
Burka, L. T., Washburn, K. D. and Irwin, R. D. 1991. Disposition of [14c]furan in the male f344 rat. Journal of Toxicology and Environmental Health. 34(2): 245-257.
Capuano, E. and Fogliano, V. 2011. Acrylamide and 5-hydroxymethylfurfural (hmf): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology. 44(4): 793-810.
C´ecile, R., Delphine, L., Emilie, R., Carole, P., and Thierry, S. 2016. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Research International. 90:154-176.
Chen, Y. H., Xia, E. Q., Xu, X. R., Ling, W. H., Li, S., Wu, S., Deng, G. F., Zou, Z.F. and Li, H. B. 2012. Evaluation of acrylamide in food from china by a lc/ms/ms method. International Journal of Environmental Research and Public Health. 9(11): 4150-4158.
Cheng, J., Chen, X., Lu, H., Chen, Q., and Zhang, Y. 2014. Antioxidant-related and kinetic studies on the reduction effect of catechins and esterified catechins on acrylamide formation in a microwave heating model system. RSC Advances. 4(82): 43378-43386.‏
Crews, C. and Castle, L. 2007. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends in Food Science & Technology. 18(7): 365-372.
Damasceno, L.F., Fernandes, F.A., Magalhães, M.M. and Brito, E.S. 2008. Non-enzymatic browning in clarified cashew apple juice during thermal treatment: Kinetics and process control. Food Chemistry. 106(1): 172-179.
Delgado-Andrade, C. 2014. Maillard reaction products: Some considerations on their health effects. Clinical Chemistry and Laboratory Medicine. 52(1): 53-60.
Delgado-Andrade, C., Morales, F. J., Seiquer, I. and Navarro, M. P. 2010. Maillard reaction products profile and intake from spanish typical dishes. Food Research International. 43(5): 1304-1311.
Delgado-Andrade, C., Rufián-Henares, J. A., and Morales, F. J. 2007. Lysine availability is diminished in commercial fibre-enriched breakfast cereals. Food Chemistry. 100(2): 725-731.
Du, Y., S. Dou, and Wu, S. 2012. Efficacy of phytic acid as an inhibitor of enzymatic and non-enzymatic browning in apple juice. Food Chemistry 135(2): 580-582.
EFSA. 2015. Panel on contaminants in the food chain (contam). Scientific opinion on acrylamide in food. EFSA Journal. 13(6):4104.
Elmore, J. S., Briddon, A., Dodson, A. T., Muttucumaru, N., Halford, N. G., and Mottram, D. S. 2015. Acrylamide in potato crisps prepared from 20 UK-grown varieties: Effects of variety and tuber storage time. Food Chemistry. 182, 1-8.
Eslamizad, S., Kobarfard, F., Tsitsimpikou, C., Tsatsakis, A., Tabib, K., and Yazdanpanah, H. 2019. Health risk assessment of acrylamide in bread in Iran using lc-ms/ms. Food and Chemical Toxicology. 126, 162-168.
Fallico, B., Zappala, M., Arena, E., and Verzera, A. 2004. Effects of conditioning on hmf content in unifloral honeys. Food Chemistry. 85(2): 305-313.
Fogliano, V. 2015. Maillard reaction products: Occurenc, mitigation strategies and their physiological relevance. Doctoral dissertation, Budapesti Corvinus Egyetem.
Friedman, M. 1996. Food browning and its prevention:  An overview. Journal of Agricultural and Food Chemistry. 44(3): 631-653.
Fustier, P., St-Germain, F., Lamarche, F., and Mondor, M. 2011. Non-enzymatic browning and ascorbic acid degradation of orange juice subjected to electroreduction and electro-oxidation treatments. Innovative Food Science & Emerging Technologies. 12(4), 491-498.‏
Gerrard, J. A. 2006. The Maillard reaction in food: Progress made, challenges ahead—conference report from the eighth international symposium on the maillard reaction. Trends in Food Science & Technology. 17(6): 324-330.
Gökmen, V. and Morales, F. J. 2014. Hydroxymethylfurfural. Encyclopedia of Food Safety. 2, 404-408.
Hagmar, L., Törnqvist, M., Nordander, C., Rosén, I., Bruze, M., Kautiainen, A., Magnusson, A., Malmberg, B., Aprea, P., Granath, F. and Axmon, A. 2001. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scandinavian Journal of Work, Environment & Health. 27(4): 219-226.‏
Hodge, J. E. 1953. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry. 1(15): 928-943.
Hogervorst, J. G., Schouten, L. J., Konings, E. J., Goldbohm, R. A., and van den Brandt, P. A. 2008. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. American Journal of Clinical Nutrition. 87(5): 1428-1438.
Hu, F., Jin, S. Q., Zhu, B. Q., Chen, W. Q., Wang, X. Y., Liu, Z., and Luo, J. W. 2017. Acrylamide in thermal-processed carbohydrate-rich foods from chinese market. Food Additives & Contaminants: Part B 10(3): 228-232.
Husøy, T., Haugen, M., Murkovic, M., Jöbstl, D., Stølen, L. H., Bjellaas, T., Rønningborg, C., Glatt, H. and Alexander, J. 2008. Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure. Food and Chemical Toxicology. 46(12): 3697-3702.‏
IARC. 1995. Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, & World Health Organization. Dry cleaning, some chlorinated solvents and other industrial chemicals (Vol. 63). World Health Organization.‏
Jaeger, H., Janositz, A., and Knorr, D. 2010. The maillard reaction and its control during food processing. The potential of emerging technologies. Pathologie Biologie. 58(3): 207-213.
Khan, M. R., Alothman, Z. A., Naushad, M., Alomary, A. K., Alfadul, S. M., Alsohaimi, I. H., & Algamdi, M. S. 2017. Occurrence of acrylamide carcinogen in Arabic coffee Qahwa, coffee and tea from Saudi Arabian market. Scientific Reports. 7(1): 1-8.‏
Kim, T.-K., Kim, S. and Lee, K.G. 2010. Analysis of furan in heat-processed foods consumed in korea using solid phase microextraction–gas chromatography/mass spectrometry (SPME–GC/MS). Food Chemistry. 123(4): 1328-1333.
Kwak, E. J. and S. I. Lim. 2004. The effect of sugar, amino acid, metal ion, and nacl on model maillard reaction under pH control. Amino Acids. 27(1): 85-90.
Lee, C. H., Chen, K. T., Lin, J. A., Chen, Y. T., Chen, Y. A., Wu, J. T., and Hsieh, C. W. 2019. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends in Food Science & Technology. 93, 271-280.
Lertittikul, W., Benjakul, S., and Tanaka, M. 2007. Characteristics and antioxidative activity of maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry. 100(2): 669-677.
Liu, Y. T., and Tsai, S. W. 2010. Assessment of dietary furan exposures from heat processed foods in taiwan. Chemosphere. 79(1): 54-59.
Machiels, D. and Istasse, L. 2002. Maillard reaction: Importance and applications in food chemistry. Annales de Médecine Vétérinaire. 146(6): 347-352.
Madani-Tonekaboni, M., Kamankesh, M., AM Farsani, M., Ferdowsi, R. and Mohammadi, A. 2015. Determination of furfural (F) and hydroxylmethyl furfural (HMF) in baby formulas obtained from tehran market using dispersive liquid-liquid microextraction (DLLM) followed by high-performance liquid chromatography. Iranian Journal of Nutrition Sciences & Food Technology. 9(4): 97-107.
Malec, L.S., Gonzales, A.P., Naranjo, G.B. and Vigo, M.S. 2002. Influence of water activity and storage temperature on lysine availability of a milk like system. Food Research International. 35(9): 849-853.
Mańkowska, D., Majak, I., Bartos, A., Słowianek, M., Łącka, A. and Leszczyńska, J. 2017. 5-hydroxymethylfurfural content in selected gluten-and gluten-free cereal food products. Biotechnology and Food Science. 81(1): 11-21.
Märk, J., Pollien, P., Lindinger, C., Blank, I. and Märk, T. 2006. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. Journal of Agricultural and Food Chemistry. 54(7): 2786-2793.
Mehta, B. M. 2015. Nutritional and toxicological aspects of the chemical changes of food components and nutrients during heating and cooking. Handbook of Food Chemistry. pp. 897-936.‏
Mesías, M., Guerra-Hernández, E. and García-Villanova, B. 2012. Furan content in Spanish baby foods and its relation with potential precursors. Cyta - Journal of Food. 11(1): 1-6.
Negoita, M., Iorga, E., Adascalului, A., Catana, L., Belc, N., Stan, A., Efstatiade, D. and Aboul-Enein, H.Y. 2016. Analysis and evaluation of the acrylamide levels in some bread assortments on the Romanian market by GC-MS/MS. Journal of Environmental Science and Engineering A, 180.
Mojska, H., Gielecińska, I. and Stoś, K. 2012. Determination of acrylamide level in commercial baby foods and an assessment of infant dietary exposure. Food and Chemical Toxicology. 50(8): 2722-2728.
Motaghi, M. M., Seyedain, A.M., Honarvar, M., Mehrabani, M. and Baghizadeh, A. 2012. Determination of acrylamide in selected types of Iranian breads by SPME technique. Journal of Food Biosciences and Technology. 2(2):57-64.
Mottram, D. S., Wedzicha, B. L. and Dodson, A. T. 2002. Food chemistry: Acrylamide is formed in the maillard reaction. Nature 419(6906): 448-449.
Nie, S., Huang, J., Hu, J., Zhang, Y., Wang, S., Li, C., Marcone, M. and Xie, M. 2013. Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems. Food Science and Human Wellness. 2(2):87-92.
Nursten, H. E. 2005. The maillard reaction: Chemistry, biochemistry, and implications. Royal Society of Chemistry.
Ölmez, H., Tuncay, F., Özcan, N. and Demirel, S. 2008. A survey of acrylamide levels in foods from the turkish market. Journal of Food Composition and Analysis. 21(7): 564-568.
Ono, H., Chuda, Y., Ohnishi-Kameyama, M., Yada, H., Ishizaka, M., Kobayashi, H. and Yoshida, M. 2003. Analysis of acrylamide by lc-ms and GC-MS in processed Japanese foods. Food Additives and Contaminants. 20(3): 215-220.
Ordóñez-Santos, L.E., Vázquez-Odériz, L., Arbones-Maciñeira, E. and Romero-Rodríguez, M.Á. 2009. The influence of storage time on micronutrients in bottled tomato pulp. Food Chemistry. 112(1): 146-149.
Oroian, M., Amariei, S. and Gutt, G. 2015. Acrylamide in romanian food using hplc-uv and a health risk assessment. Food Additives & Contaminants: Part B. 8(2): 136-141.
Özkaynak, E. and Ova, G. 2009. Effects of various cooking conditions on acrylamide formation in rolled patty. Food Additives & Contaminants: Part A 26(66): 793-799.
Palazoǧlu, T.K. and Gökmen, V. 2008. Reduction of acrylamide level in French fries by employing a temperature program during frying. Journal of Agricultural and Food Chemistry 56(15): 6162-6166.
Perez Locas, C. and Yaylayan, V.A. 2004. Origin and mechanistic pathways of formation of the parent furana food toxicant. Journal of Agricultural and Food Chemistry. 52(22): 6830-6836.
Purlis, E. 2010. Browning development in bakery products – A review. Journal of Food Engineering 99(3): 239-249.
Ramı́rez-Jiménez, A., Garcı́a-Villanova, B. and Guerra-Hernandez, E. 2004. Effect of storage conditions and inclusion of milk on available lysine in infant cereals. Food Chemistry. 85(2): 239-244.
Ramonaitytė, D.T., Keršienė, M., Adams, A., Tehrani, K.A. and De Kimpe, N. 2009. The interaction of metal ions with maillard reaction products in a lactose–glycine model system. Food Research International. 42(3): 331-336.
Rannou, C., Laroque, D., Renault, E., Prost, C. and Sérot, T. 2016. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Research International. 90, 154-176.
Razia, S., Bertrand, M., Klaus, V. and Meinolf, G. L. 2016. Nvestigation of acrylamide levels in branded biscuits, cakes and potato chips commonly consumed in pakistan. International Food Research Journal. 23(5): 2187-2192.
Rufian-Henares, J. A., Arribas-Lorenzo, G. and Morales, F. J. 2007. Acrylamide content of selected spanish foods: Survey of biscuits and bread derivatives. Food Additives and Contaminants. 24(4): 343-350.
Rufián‐Henares, J.A., Delgado‐Andrade, C. and Morales, F.J. 2006. Relationship between acrylamide and thermal-processing indexes in commercial breakfast cereals: A survey of spanish breakfast cereals. Molecular nutrition & food research 50: 756-762.
Sadeghi, E., Yeganeh, S., Shoeibi, S., Amirahmadi, M., Karami, F. and Sharafi, K. 2016. Determinationof acrylamide in traditional and industrial breads: A case study: Tehran, Iran. International Journal of Pharmacy and Technology. 8(2): 881-892.
Schamberger, G. P. and Labuza, T. P. 2007. Effect of green tea flavonoids on maillard browning in uht milk. LWT - Food Science and Technology. 40(8): 1410-1417.
Schmitz, I., Gianfrancesco, A., Kulozik, U. and Foerst, P. 2011. Influence of temperature and the physical state on available lysine in powdered infant formula. Procedia Food Science. 1: 1031-1038.
Seok, Y. J., Her, J. Y., Kim, Y. G., Kim, M. Y., Jeong, S. Y., Kim, M. K., Lee, J. Y., Kim, C. I., Yoon, H. J. and Lee, K. G. 2015. Furan in thermally processed foods-a review. Toxicological Research. 31(3): 241-253.
Shamla, L. and Nisha, P. 2014. Acrylamide in deep-fried snacks of india. Food Additives & Contaminants: Part B. 7(3):220-225.
Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I. and Gan, S.H. 2018. 5-hydroxymethylfurfural (hmf) levels in honey and other food products: Effects on bees and human health. Chemistry Central Journal. 12(1): 1-18.
Sijia, W., Enting, W. and Yuan, Y. 2014. Detection of furan levels in select Chinese foods by solid phase microextraction-gas chromatography/mass spectrometry method and dietary exposure estimation of furan in the Chinese population. Food and Chemical Toxicology. 64, 34-40 
Singh, R. R. B., Ruhil, A. P., Jain, D. K., Patel, A. A. and Patil, G. R. 2009. Prediction of sensory quality of uht milk – a comparison of kinetic and neural network approaches. Journal of Food Engineering 92(2): 146-151.
Sirot, V., Hommet, F., Tard, A. and Leblanc, J. C. 2012. Dietary acrylamide exposure of the French population: Results of the second French total diet study. Food and Chemical Toxicology. 50 (3-4): 889-894.
Smuda, M. and Glomb, M.A. 2013. Maillard degradation pathways of vitamin C. Angewandte Chemie International Edition. 52(18): 4887-4891.
Stadler, R. H. and A. Studer. 2015. Acrylamide in food In: V. Gökmens (Ed.). Acrylamide in food Academic Press. pp. 532.
Tateo, F., Bononi, M. and Andreoli, G. 2007. Acrylamide levels in cooked rice, tomato sauces and some fast food on the italian market. Journal of Food Composition and Analysis. 20(3-4): 232-235.
Tateo, F., Bononi, M. and Gallone, F. 2010. Acrylamide content in potato chips on the italian market determined by liquid chromatography tandem mass spectrometry. International Journal of Food Science & Technology. 45(3): 629-634.
Vranova, J. and Ciesarova, Z. 2009. Furan in food-a review. Czech Journal of Food Science. 27(1): 1-10.
Whitfield, F. B. and Mottram, D. S. 1992. Volatiles from interactions of maillard reactions and lipids. Critical Reviews in Food Science & Nutrition. 31(1-2):1-58.
Zhang, Y., Ren, Y., Zhao, H. and Zhang, Y. 2007. Determination of acrylamide in chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry. Analytica Chimica Acta. 584(2): 322-332.
Zhang, Y. and Zhang, Y. 2007. Formation and reduction of acrylamide in maillard reaction: A review based on the current state of knowledge. Critical Reviews in Food Science and Nutrition. 47(5): 521-542.
Zhuang, H., Zhang, T., Liu, J. and Yuan, Y. 2012. Detection of acrylamide content in traditional chinese food by high-performance liquid chromatography tandem mass spectrometry method. Cyta - Journal of Food. 10(1): 36-41.