نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 گروه علوم و مهندسی صنایع غذایی-صنایع غذایی/دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

فرایندهای الکتریکی در صنعت غذا از اهمیت بالایی برخوردار هستند و روش اهمیک یکی از روش‌های الکتریکی است که با استفاده از عبور جریان الکتریسیته از میان محصول سبب ایجاد حرارت در محصول می‌گردد. در گرمایش اهمیک، دما بدون نیاز به انتقال گرما از سطح جامد-مایع، افزایش می­یابد. در این تحقیق یک دستگاه گرمایش اهمیک ساخته شد و برای فرایند حرارت دهی در سه گرادیان ولتاژ ورودی (5، 5/7 و 10 وات بر سانتی متر) و سه دمای فرایند (60، 75 و 90 درجه سلسیوس) برای انجام فرایند حرارت دهی انتخاب گردید. طی فرایند حرارتی محتوای فنل کل، فلاونوئید کل، مواد جامد محلول و pH موردبررسی قرار گرفتند. تمامی آزمایش­ها در سه تکرار و با استفاده از آزمایش فاکتوریل و در قالب طرح کاملاً تصادفی انجام شد و نتایج با استفاده از نرم‌افزار SAS مورد تجزیه‌وتحلیل قرار گرفت. با توجه به نتایج به‌دست‌آمده گرادیان ولتاژ و دمای فرآیند بر روی محتوای فنل کل، مقدار فلاونوئید، pH و کل مواد جامد محلول در سطح 1٪ معنی‌دار بود. بیشترین مقدار فنل کل و محتوای فلاونوئید در گرادیان ولتاژ 5 ولت بر سانتی متر و دمای فرآیند 60 درجه سلسیوس و کمترین مقدار در گرادیان ولتاژ 10 ولت بر سانتی متر و دمای فرآیند 90 درجه سلسیوس بود. حداکثر pH در گرادیان ولتاژ 5 ولت بر سانتی متر و دمای فرآیند 90 درجه سلسیوس و کمترین مقدار در گرادیان ولتاژ 10 ولت بر سانتی متر و دمای فرآیند 60 درجه سلسیوس مشاهده شد. بالاترین میزان تولید در گرادیان ولتاژ 10 وات بر سانتی متر و دمای فرآیند 90 درجه سلسیوس و کمترین مقدار در گرادیان ولتاژ 5 ولت بر سانتی متر و دمای فرآیند 60 درجه سلسیوس بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Changes in the Qualitative Properties of Sour Orange Juice during the Ohmic Heating Process

نویسندگان [English]

  • Mohammad Vahedi Torshizi 1
  • Mahdi Kashaninejad 3

1 Department of Bio-system Mechanical Engineering, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources

3 Professor of Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

چکیده [English]

Electrical treatments play an important role in conventional methods of food technology. Ohmic processing is an electrical and thermal method based on the passage of electricity through a product that acts as an electrical resistor. In ohmic heating, the temperature rises without the need for heat transfer from the solid-liquid surface. In this research, an ohmic heating device was constructed, and for the heating process, three input voltage gradients (5, 7.5, and 10 V/cm) and three process temperatures (60, 75, and 90 °C) were selected. During the thermal process, the content of total phenol, total flavonoids, and soluble solids (Brix and PH) was examined. All experiments were performed in three replications using a factorial experiment in a completely randomized design. The results were analyzed using SAS software. According to the obtained results, the voltage and temperature gradients of the process on the total phenol content, the amount of flavonoids, pH, and total soluble solids were significant at the level of 1%. The highest amount of total phenol and flavonoid content was at the voltage gradient of 5 V/cm and process temperature of 60 ° C and the lowest value was at the voltage gradient of 10 V/cm and process temperature of 90 °C. The maximum pH was observed at a voltage gradient of 5 V/cm and a process temperature of 90 ° C and the lowest value was observed at a voltage gradient of 10 V/ cm and a process temperature of 60 °C. The highest output was at a voltage gradient of 10 V/cm and the process temperature was 90 °C; the lowest value was at a voltage gradient of 5 V/cm and the process temperature was 60 °C.
 

کلیدواژه‌ها [English]

  • Electrical treatments
  • Total Phenol
  • Total Flavonoids
  • Voltage gradient
Akin, E. and Evrendilek, G. A. 2009. Effect of pulsed electric fields on physical, chemical, and microbiological properties of formulated carrot juice. Food Science and Technology International. 15 (3): 275–82.
Altuntas, J., Evrendilek, G.A., Sangun Mustafa, K. and Zhang Howard, Q. 2010. Effects of pulsed electric field processing on the quality and microbial inactivation of sour cherry juice. International Journal of Food Science and Technology. 45 (5): 899–905.
Asefi, N. and Jafarian, P. 2018. Evaluation of the effect of different heat pretreatment on chemical properties of grape juice. Journal of Food Technology and Nutrition. 15(3): 65-72.
Assiry Alhussein, M., Sastry Sudhir, K. and Samaranayake Chaminda, P. 2006. Influence of temperature, electrical conductivity, power and ph on ascorbic acid degradation kinetics during ohmic heating using stainless steel electrodes. Bio electrochemistry. 68, 7–13.
Baysal, T. and Rayman, A. 2011. Effects of electrical pre-treatment applications on yield and quality of grape juice. The Journal of Food. 36, 145–52.
Bozkurt, H. and Icier, F. 2010. Exergetic performance analysis of ohmic cooking process. Journal of Food Engineering. 100 (4): 688–95.
Cabrera Shirley, G., Jang Ji, H., Kim Sang, T., Lee Yun, R., Lee Hyeon, J., Chung Hun, S. and Moon Kwang, D. 2009. Effects of processing time and temperature on the quality components of campbell grape juice. Journal of Food Processing and Preservation. 33 (3): 347–60.
Chakrabortya, I. and Athmaselvi, K.A. 2014. Changes in physicochemical properties of guava juice during ohmic heating. Journal of Ready to Eat Food. 1 (4): 152–57.
Darvishi, H., Khostaghaza, M.H. and Najafi, Gh. 2013. Ohmic Heating of Pomegranate Juice: Electrical conductivity and ph change. Journal of the Saudi Society of Agricultural Sciences. 12 (2): 101–8.
Darvishi, H., Salami, P., Fadavi, A. and Saba, M. K. 2020. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using ohmic heating. Food and Bioproducts Processing. 123, 102-110.
Huang, D.J., Chun-Der, L.I.N., Hsien-Jung, C.H.E.N. and Yaw-Huei, L.I.N., 2004. Antioxidant and antiproliferative activities of sweet potato (Ipomoea batatas [L.] LamTainong 57') constituents. Botanical Bulletin of Academia Sinica Journal. 45, 179-186.
Icier, F. and Ilicali, C. 2005. Temperature dependent electrical conductivities of fruit purees during ohmic heating. Food Research International. 38(10): 135–1142.
Imai, t., uemura, k.,ishida, N.,yoshizaki, sh. and noguchi, a. 2007. Ohmic heating of japanese white radish Rhaphanus sativus L. International Journal of Food Science & Technology. 30 (4): 461–72.
Ishita, C. and Athmaselvi, K. A. 2017. Changes in ph and colour of watermelon juice during ohmic heating. International Food Research Journal. 24 (2): 741–46.
Jaramillo-Flores, ME., González-Cruz, L., Cornejo-Mazón, M., Dorantes-álvarez, L., Gutiérrez-López, G.F and Hernández-Sánchez, H. 2003. Effect of thermal treatment on the antioxidant activity and content of carotenoids and phenolic compounds of cactus pear cladodes (Opuntia Ficus-Indica). Food Science and Technology International. 9 (4): 271–78.
Lee Hyeon, J., Chung, H. and Moon Kwang, D. 2008. Effects of processing time and temperature on the quality components of campbell grape juice. Journal of Food Processing and Preservation. 33(3): 347–60.
Makroo, H.A., Saxena, J., Rastogi, N.K. and Srivastava, B. 2017. Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: effects of the treatment on ph, lycopene, total phenolic content, and color of the juice. Journal of Food Processing and Preservation. 41 (6): 1–9.
Marcotte, M. and Trigui, M. 2000. Conductivities and ohmic heating of viscous. Journal of Food Processing and Preservation. 24, 389–406.
Martín-cabrejas, A., Aguilera, Y., Pedrosa, M., Cuadrado, C., Hernández, T., Díaz, S. and Esteban, R. 2009. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry. 114 (3): 1063–68.
Mercali, G.D., Schwartz, S., Marczak, L.D.F., Tessaro, I.C. and Sastry, S. 2014. Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: effect of electric field frequency. Journal of Food Engineering. 123 (February): 1–7.
Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E. and Di Scala, K. 2010. Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium Quinoa Willd). Industrial Crops & Products. 32 (3): 258–63.
Seyedabadi, M.M., Aghajanzadeh, S., Kashaninejad, M., and Ziaiifar, A.m. 2017. Investigation of the effect of microwave on some physicochemical properties of sour orange juice. Journal of Food Science and Technology. 14 (62): 17–29.
Sabanci, S., Cevik, M., Cokgezme, O.F., Yildiz, H. and Icier, F., 2019. Quality characteristics of pomegranate juice concentrates produced by ohmic heating assisted vacuum evaporation. Journal of the Science of Food and Agriculture. 99(5): 589-2595.
Toor Ramandeep, K., and Savage Geoffrey, P. 2006. Effect of semi-drying on the antioxidant components of tomatoes. Food Chemistry. 94(1): 90–97.
Vahedi Torshizi, M. and Hosseini Mighani, A. 2017. The application of solar energy in agricultural systems. Journal of Renewable Energy and Sustainable Development (RESD). 3 (2): 234–40.
Valizadeh, H., Shomali, A., Ghorbani, J., and Noorshargh, S. 2015. Synthesis of a nitrite functionalized star-like poly ionic compound as a highly efficient nitrosonium source and catalyst for the diazotization of anilines and subsequent facile synthesis of azo dyes under solvent-free conditions. Dyes and Pigments. 117, 64–71.
Vikram, VB., Ramesh, MN. and Prapulla, SG. 2005. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering. 69(1): 31–40.
Wang, L. J., Li, D., Tatsumi, E., Liu Zhi, S., Chen Xiao, D. and Li, L. T. 2007. Application of two-stage ohmic heating to tofu processing. Chemical Engineering and Processing: Process Intensification. 46 (5): 486–90.
Zareifard, M. R., Ramaswamy, HS., Trigui M., and Marcotte, M. 2003. Ohmic heating behaviour and electrical conductivity of two-phase food systems. Innovative Food Science and Emerging Technologies. 4 (1): 45–55.