نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

در این پژوهش، نانوذرات ایزولۀ پروتئین شیر (MPI) به روش الکترواسپری تولید شدند. به‌منظور بهینه‌سازی شرایط الکترواسپری نانوذرات MPI، غلظت محلول MPI (برحسب درصد وزنی)، ولتاژ فرایند (برحسب کیلوولت)، فاصلۀ حرکتی ذرات بین نوک سوزن و جمع‌کننده (برحسب سانتی‌متر) و سرعت جریان پمپ (برحسب میلی‌لیتر بر ساعت) در قالب طرح مرکب مرکزی (CCD) بررسی و به روش سطح پاسخ (RSM) مدل‌سازی و تجزیه‌وتحلیل شدند. نتایج بررسی­ها نشان داد که غلظت محلول MPI بیشترین تأثیر و فاصله بین نوک سوزن و جمع کننده کمترین تأثیر را بر قطر نانوذرات دارند. بر طبق نتایج به­دست آمده، با بهینه‌سازی غلظت محلول MPI (2.5 درصد وزنی)، سرعت جریان پمپ (0.2 میلی‌لیتر بر ساعت)، فاصلۀ بین نوک سوزن و جمع‌کننده (15 سانتی‌متر) و ولتاژ (17.5 کیلوولت) می‌توان نانوذرات یکنواخت MPI تولید کرد. تصویرهای حاصل از میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ نیروی اتمی (AFM) موفقیت روش الکترواسپری را در تولید نانوذرات کروی با میانگین قطر 204.3 نانومتر و حداکثر یکنواختی در توزیع اندازۀ ذرات تأیید کردند. آنالیز طیف‌سنجی فروسرخ با تبدیل فوریه (FTIR) چگونگی ساختار شیمیایی نانوذرات را بیان کرد.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication and characterization of milk protein isolate nanoparticles by electrospraying method

نویسندگان [English]

  • Siamak Rahbari 1
  • Hamid Tavakolipour 1
  • Ahmad Kalbasi Ashtari 2

1 Department of Food Science and Industry, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Food Sciences and Industries, Faculty of Agriculture, University of Tehran, Karaj, Iran

چکیده [English]

In this research, nanoparticles of milk protein isolate (MPI) were produced by electrospraying method. In order to optimize the electrospraying conditions of MPI nanoparticles, the concentration of MPI solution (%wt.), the process voltage (kV), the moving distance of the particles between the tip of the needle and the collector (cm) and the pump flow rate (mL/h) in the form of a composite plot central (CCD) were investigated and modeled and analyzed by the response surface method (RSM). The results showed that the concentration of MPI solution had the greatest effect and the distance between the tip of the needle and the accumulator had the least effect on the diameter of nanoparticles. According to the results, by optimizing the concentration of MPI solution (2.5%wt.), pump flow rate (0.2 mL/h), the distance between the tip of the needle and the collector (15 cm) and voltage (17.5 kV), uniform MPI nanoparticles can be obtained. The images from the scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirmed the success of the electrospray method in producing spherical nanoparticles with an average diameter of 329.3 nm and maximum uniformity in particle size distribution. Also, Fourier transform infrared spectroscopic (FTIR) analysis revealed the chemical structure of nanoparticles.

کلیدواژه‌ها [English]

  • Electrospray
  • Milk protein isolate
  • response surface method
  • Modeling
Angammana, C.J. and Jayaram, S.H. 2016. Fundamentals of electrospinning and processing technologies. Particulate Science and Technology. 34(1): 72-82.
Araiza-Calahorra, A., Akhtar, M. and Sarkar, A. 2018. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology. 71(1): 155-169.
Asadi, M., Salami, M., Hajikhani, M., Emam-Djomeh, Z., Aghakhani, A. and Ghasemi, A. 2021. Electrospray production of curcumin-walnut protein nanoparticles. Food Biophysics. 16(1): 15-26.
Baş, D. and Boyacı, I.H. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of food engineering. 78(3): 836-845.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta. 76(5): 965-977.
Bhushani, J. A. and Anandharamakrishnan, C. 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology. 38(1): 21-33.
Calamak, S. 2021. Micro/Nanoencapsulation of Active Food Compounds: Encapsulation, Characterization and Biological Fate of Encapsulated Systems. In: Sustainable Agriculture Reviews. 55(1): 93-114.
Chen, M., Irudayaraj, J. and McMahon, D.J. 1998. Examination of full fat and reduced fat Cheddar cheese during ripening by Fourier transform infrared spectroscopy. Journal of Dairy Science. 81(11): 2791-2797.
Coelho, S. C., Estevinho, B. N. and Rocha, F. 2021. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review. Food Chemistry. 339(1): 127850.
Cui, W., Li, X., Zhou, S. and Weng, J. 2007. Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of applied polymer science. 103(5): 3105-3112.
Desai, K., Lee, J. S. and Sung, C. 2004. Nanocharacterization of electrospun nanofibers of polyaniline/poly methyl methacrylate blends using SEM, TEM and AFM. Microscopy and Microanalysis. 10(02): 556-557.
Ekrami, A., Ghadermazi, M., Ekrami, M., Hosseini, M. A., Emam-Djomeh, Z. and Hamidi-Moghadam, R. 2022. Development and evaluation of Zhumeria majdae essential oil-loaded nanoliposome against multidrug-resistant clinical pathogens causing nosocomial infection. Journal of Drug Delivery Science and Technology, 69(1): 103-148.
Ekrami, M., Ekrami, A., Esmaeily, R. and Emam-Djomeh, Z. 2022a. Nanotechnology-based Formulation for Alternative Medicines and Natural Products: An Introduction with Clinical Studies. Biopolymers in Nutraceuticals and Functional Foods. 545-580.
Ekrami, M., Ekrami, A., Moghadam, R.H., Joolaei-Ahranjani, P. and Emam-Djomeh, Z. 2022b. Food-based Polymers for Encapsulation and Delivery of Bioactive Compounds. In: Biopolymers in Nutraceuticals and Functional Foods, Royal Society of Chemistry. 488-544.
Ekrami, M., Ekrami, A., Hosseini, M. A. and Emam-Djomeh, Z. 2022c. Characterization and optimization of salep mucilage bionanocomposite films containing Allium jesdianum Boiss. Nanoliposomes for antibacterial food packaging utilization. Molecules, 27(20): 7032.
Ekrami, M., Roshani-Dehlaghi, N., Ekrami, A., Shakouri, M. and Emam-Djomeh, Z. 2022d. pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry. 4(4): 1360-1381.
Emam‐Djomeh, Z., Ekrami, M. and Ekrami, A. 2023a. Design and Use of Hydrogels for Food Component Encapsulation. Materials Science and Engineering in Food Product Development, 211-226.
Emam‐Djomeh, Z., Ekrami, M. and Ekrami, A. 2023b. Overview of Types of Materials Used for Food Component Encapsulation. Materials Science and Engineering in Food Product Development, 73-92.
Farahmand, E., Emam-Djomeh, Z., Ekrami, M. and Razavi, S. H. 2023. Polymethacrylate coated electrospun chitosan/PEO nanofibers loaded with thyme essential oil: a newfound potential for antimicrobial food packaging. Journal of Food and Bioprocess Engineering.
Jacobs, V., Anandjiwala, R. D. and Maaza, M. 2010. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of applied polymer science. 115(5): 3130-3136.
Jahangiri, A. and Adibkia, K. 2016. Applications of electrospinning/electrospraying in drug delivery. BioImpacts, 6(1): 1-2.
Ji, J., Cronin, K., Fitzpatrick, J., Fenelon, M. and Miao, S. 2015. Effects of fluid bed agglomeration on the structure modification and reconstitution behaviour of milk protein isolate powders. Journal of Food Engineering. 167(1): 175-182.
Kessick, R. and Tepper, G. 2003. Microscale electrospinning of polymer nanofiber interconnections. Applied physics letters, 83(3): 557-559.
Kher, A., Udabage, P., McKinnon, I., McNaughton, D. and Augustin, M.A. 2007. FTIR investigation of spray-dried milk protein concentrate powders. Vibrational Spectroscopy. 44(2): 375-381.
Khuri, A.I. and Mukhopadhyay, S. 2010. Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics. 2(2): 128-149.
Lenth, R.V. 2010. Response-surface methods in R, using rsm. Journal of Statistical Software. 32(1): 1-17.
Li, Z. and Wang, C. 2013. Effects of working parameters on electrospinning. In: One-dimensional nanostructures, Springer. 15-28.
Li, J., Pan, K., Tian, H. and Yin, L. 2020. The Potential of electrospinning/electrospraying technology in the rational design of hydrogel structures. Macromolecular Materials and Engineering. 305(8), 2000285.
Lim, L.-T., Mendes, A. C. and Chronakis, I. S. 2019. Electrospinning and electrospraying technologies for food applications. Advances in food and nutrition research. 88(1): 167-234.
Mendes, A.C. and Chronakis, I.S. 2021. Electrohydrodynamic encapsulation of probiotics: A review. Food Hydrocolloids. 117(1): 106688.
McCarthy, N. A., Kelly, P. M., Maher, P. G. and Fenelon, M. A. 2014. Dissolution of milk protein concentrate (MPC) powders by ultrasonication. Journal of Food Engineering, 126(1): 142-148.
Mirzakhani, M., Ekrami, M. and Moini, S. 2018. Chemical composition, total phenolic content and antimicrobial activities of Zhumeria majdae. Journal of Food and Bioprocess Engineering (JFBE). 1(1): 8.
Morais, A.Í., Vieira, E.G., Afewerki, S., Sousa, R.B., Honorio, L.M., Cambrussi, A.N., Santos, J.A., Bezerra, R.D., Furtini, J.A. and Silva-Filho, E.C. 2020. Fabrication of polymeric microparticles by electrospray: the impact of experimental parameters. Journal of functional biomaterials. 11(1): 4.
Munteanu, B.S. and Vasile, C. 2021. Encapsulation of natural bioactive compounds by electrospinning—applications in food storage and safety. Polymers. 13(21): 3771.
Nejat, M. S., Ekrami, M. and Emam-Djomeh, Z. 2022. Microencapsulation Liposomal Technologies in Bioactive Functional Foods and Nutraceuticals. In Biopolymers in Nutraceuticals and Functional Foods, Royal Society of Chemistry. 232-263
Nie, B., Stutzman, J. and Xie, A. 2005. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophysical Journal. 88(4): 2833-2847.
Shakouri, M., Salami, M., Lim, L.-T., Ekrami, M., Mohammadian, M., Askari, G. and McClements, D. J. 2023. Development of active and intelligent colorimetric biopolymer indicator: Anthocyanin-loaded gelatin-basil seed gum films. Journal of Food Measurement and Characterization. 17(1):472-484.
Shao, H., Fang, J., Wang, H. and Lin, T. 2015. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC advances. 5(19): 14345-14350.
Steipel, R.T., Gallovic, M.D., Batty, C.J., Bachelder, E.M. and Ainslie, K.M. 2019. Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. Materials Science and Engineering: C. 105(1): 110070.
Taha, S., El-Sherbiny, I., Enomoto, T., Salem, A., Nagai, E., Askar, A., Abady, G. and Abdel-Hamid, M. 2020. Improving the functional activities of curcumin using milk proteins as nanocarriers. Foods. 9(8): 986.
Tavares, G.M., Croguennec, T., Carvalho, A.F. and Bouhallab, S. 2014. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends in Food Science & Technology. 37(1): 5-20.
Thompson, C., Chase, G.G., Yarin, A. and Reneker, D. 2007. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 48(23): 6922-6913.
Zare, M., Dziemidowicz, K., Williams, G.R. and Ramakrishna, S. 2021. Encapsulation of pharmaceutical and nutraceutical active ingredients using electrospinning processes. Nanomaterials. 11(8): 1968.
Zheng, J., Zhang, H., Zhao, Z. and Han, C. C. 2012. Construction of hierarchical structures by electrospinning or electrospraying. Polymer, 53(2): 546-554.