نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 موسسه پژوهشی علوم و صنایع غذایی

چکیده

پروپولیس سرشار از ترکیبات بیواکتیو ازجمله ترکیبات آنتی‌اکسیدان و ضد میکروبی است، ازاین‌رو محافظت از این ترکیبات حساس با روش‌هایی با کارایی بالا مانند ریزپوشانی ضروری است. هدف از این پژوهش، استخراج عصاره پروپولیس، تهیه نانو ذرات حاوی عصاره و بررسی ویژگی‌های فیزیکوشیمیایی آن است. در این پژوهش، عصارۀ پروپولیس با حلال‌های اتانول- آب (70:30 حجمی/حجمی) استخراج و نانو ذرات پروتئینی حاوی آن تهیه شد. ویژگی‌های دینامیکی نور، کارایی ریزپوشانی، تشخیص ساختار کریستالی و آمورف و واکنش‌های موجود بین هسته و مواد دیواره‌ای در نانو ذرات اندازه‌گیری شد. برای تجزیه و تحلیل نتایج از روش آنالیز واریانس، با استفاده از نرم‌افزار SPSS، و برای تحلیل نمودارهای FT-IR از نرم‌افزار IRpal 2. استفاده شد. نتایج به‌دست‌آمده از آزمون دینامیکی و کارایی ریزپوشانی نشان داد که با افزایش مقدار هسته و مواد دیواره‌ای کارایی ریزپوشانی، اندازۀ ذرات و درصد پراکندگی افزایش می‌یابد. در فرمولاسیون با مقادیر یکسان پروتئین، با افزایش غلظت عصارۀ پروپولیس، مقدار بار منفی پتانسیل زتا نیز افزایش یافت. نتایج حاصل از رنگ‌سنجی نشان داد که تیمارهای P6 و P8 به ترتیب بالاترین شاخص * L و * a را داشتند. نمودارهای حاصل از آزمون FT-IR نشان داد که تغییرات بسیار جزئی به صورت جابه‌جایی پیک یا تغییر متقارن در نانو ذرات حاوی عصارۀ پروپولیس نسبت به نانو ذرات شاهد صورت گرفته است. این پژوهش نشان داد در تهیۀ نانو ذرات، هر چه مقدار مادۀ هسته‌ای بیشتر باشد اندازۀ نانو ذرات حاصل بزرگ‌تر خواهد شد و شدت کریستالی و کارایی ریزپوشانی بیشتری نیز حاصل می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of dynamic and physicochemical properties of loaded- propolis extract nanoparticles

نویسندگان [English]

  • Mansooreh Soleimanifard 1
  • Javad Feizy 2

1 Gorgan university of agricultural sciences and natural resources

2 Assistant Professor, Department of Food Safety and Quality Control, Research Institute of Food Science and Technology, Mashhad, Iran.

چکیده [English]

Propolis is rich in bioactive compounds, including antioxidant and antimicrobial compounds, therefore it is necessary to protect these sensitive compounds by high-performance methods such as encapsulation. The purpose of this research was to produce nanoparticles containing the propolis extract and to investigate its physicochemical characteristics. In this research, propolis was extracted with ethanol-water (70:30) solvents and protein nanoparticles containing it were prepared. Then, the dynamic light scattering characteristics, the encapsulation efficiency, the detection of crystalline and amorphous structure, and the interactions between the core and wall materials in nanoparticles were measured. To analyse the results, analysis of variance method was used, using SPSS software. The results of the dynamic test and encapsulation efficiency showed that with the increase in the amount of core and wall materials, the encapsulation efficiency, particle size and PDI increase. In the formulation with the same amounts of protein, with the increase in the concentration of propolis extract, the amount of negative charge of zeta potential also increased. The results of the XRD device showed that the treatments, 6 and 8, had the highest values of L and a, respectively. The graphs obtained from the FT-IR test showed that there were very minor changes in the form of peak displacement or symmetrical changes in the nanoparticles containing propolis extract compared to the control nanoparticles. This research showed that in the preparation of nanoparticles, the larger the amount of nuclear material, the larger the size of the resulting nanoparticles, the crystal intensity and the encapsulation efficiency.

کلیدواژه‌ها [English]

  • Encapsulation
  • Propolis extract
  • Nanoparticles
  • Physicochemical properties
Acosta, E. (2008). Testing the effectiveness of nutrient delivery systems. Woodhead Publishing Ltd
Banskota, A. H., Tezuka, Y., & Kadota, S. (2001). Recent progress in pharmacological research of propolis. Phytother Res, 15(7): 561-571.
Bazaria, B., and Kumar, P. (2015). Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Bioscience, 14: 21-27.
Burdock, G. A. (1998). Review of the biological properties and toxicity of bee propolis (propolis). Food and Chemical Toxicology, 36(4): 347-363.
Catchpole, O., Mitchell, K., Bloor, S., Davis, P., and Suddes, A. (2018). Anti-gastrointestinal cancer activity of cyclodextrin-encapsulated propolis. Journal of Functional Foods, 41: 1-8.
Daniel Daza, L., Fujita, A., Granato, D., Silvia Fávaro-Trindade, C., and Inés Genovese, M. (2017). Functional properties of encapsulated Cagaita (Eugenia dysenterica DC.) fruit extract. Food Bioscience, 18: 15-21.
De Oliveira Mori, C. L., Dos Passos, N. A., Oliveira, J. E., Mattoso, L. H. C., Mori, F. A., Carvalho, A. G., De Souza Fonseca, A., and Tonoli, G. H. D. (2014). Electrospinning ofzein/tannin bio-nanofibers. Industrial Crops and Products. 52: 298–304.
Elbaz, N. M., Khalil, I. A., Abd-Rabou, A. A., and El-Sherbiny, I. M. (2016). Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 92: 254-269.
Gardana, C., Scaglianti, M., Pietta, P., and Simonetti, P. (2007). Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 45(3): 390-399.
 Guo, X., Chen, B., Luo, L., Zhang, X., Dai, X., and Gong, S. (2011). Chemical compositions and antioxidant activities of water extracts of Chinese propolis. J Agric Food Chem, 59(23): 12610-12616.
Heleno, S. A., Martins, A., Queiroz, M. J. R. P., and Ferreira, I. C. F. R. (2015). Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, 173: 501-513.
Huang, S., Zhang, C. P., Wang, K., Li, G. Q., and Hu, F. L. (2014). Recent advances in the chemical composition of propolis. Molecules, 19(12): 19610-19632.
Jansen-Alves, C., Maia, D. S. V., Krumreich, F. D., Crizel-Cardoso, M. M., Fioravante, J. B., da Silva, W. P., and Zambiazi, R. C. (2019). Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocolloids, 87: 703-711.
Kazemi, F., Divsalar, A., and Saboury, A. A. (2018). Structural analysis of the interaction between free, glycated and fructated hemoglobin with propolis nanoparticles: A spectroscopic study. Int J Biol Macromol, 109: 1329-1337.
Keskin, M., Keskin, Ş., and Kolayli, S. (2019). Preparation of alcohol free propolis-alginate microcapsules, characterization and release property. LWT, 108: 89-96.
Kyriakoudi, A., and Tsimidou, M. Z. (2018). Properties of encapsulated saffron extracts in maltodextrin using the Büchi B-90 nano spray-dryer. Food Chemistry, 266: 458-465.
Li, W., Peng, H., Ning, F., Yao, L., Luo, M., Zhao, Q., and. Xiong, H. (2014). Amphiphilic chitosan derivative-based core–shell micelles: Synthesis, characterisation and properties for sustained release of Vitamin D3. Food Chemistry, 152: 307-315.
Mascheroni, E., Figoli, A., Musatti, A., Limbo, S., Drioli, E., Suevo, R., and Rollini, M. (2014). An alternative encapsulation approach for production of active chitosan–propolis beads. International Journal of Food Science & Technology, 49(5): 1401-1407.
Mato, I., Huidobro, J. F., Simal-Lozano, J., and Sancho, M. T. (2003). Significance of nonaromatic organic acids in honey. J Food Prot, 66(12): 2371-2376.
Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., and Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1: 1806-1815.
Nori, M. P., Favaro-Trindade, C. S., Matias de Alencar, S., Thomazini, M., de Camargo Balieiro, J. C., and Contreras Castillo, C. J. (2011). Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology, 44(2): 429-435.
Pastor, C., Sánchez-González, L., Marcilla, A., Chiralt, A., Cháfer, M., and González-Martínez, C. (2011). Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biology and Technology, 60(1): 64-70.
Pellati, F., Orlandini, G., Pinetti, D., and Benvenuti, S. (2011). HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. Journal of Pharmaceutical and Biomedical Analysis, 55(5): 934-948.
Rassu, G., Cossu, M., Langasco, R., Carta, A., Cavalli, R., Giunchedi, P., and Gavini, E. (2015). Propolis as lipid bioactive nano-carrier for topical nasal drug delivery. Colloids and Surfaces B: Biointerfaces, 136: 908-917.
Revilla, I., Vivar-Quintana, A. M., González-Martín, I., Escuredo, O., and Seijo, C. (2017). The potential of near infrared spectroscopy for determining the phenolic, antioxidant, color and bactericide characteristics of raw propolis. Microchemical Journal, 134: 211-217.
Santana Andrade, Â. L., Lima, A. M., Santos, V. R., da Costa e Silva, R. M. F., Barboza, A. P. M., Neves, B. R. A., and Domingues, R. Z. (2019). Glass-ionomer-propolis composites for caries inhibition: flavonoids release, physical-chemical, antibacterial and mechanical properties. Biomedical Physics & Engineering Express, 5(2): 027006.
Seibert, J. B., Bautista-Silva, J. P., Amparo, T. R., Petit, A., Pervier, P., dos Santos Almeida, J. C., and dos Santos, O. D. H. (2019). Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chemistry, 287: 61-67.
Sforcin, J. M. (2007). Propolis and the immune system: a review. Journal of Ethnopharmacology, 113(1): 1-14.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Vol. 299: pp. 152-178). Academic Press.
Siripatrawan, U., and Vitchayakitti, V. (2016). Improving functional properties of chitosan films to be used as active food packaging by incorporation with propolis. Food Hydrocolloids, 61: 116-124.
Soleimanifard, M., Feizy, J., and Maestrelli, F. (2021). Nanoencapsulation of propolis extract by sodium caseinate-maltodextrin complexes. Food and Bioproducts Processing, 128: 177-185.
Soleimanifard, M., Sadeghi Mahoonak, A., Ghorbani, M., Heidari, R., and Sepahvand, A. (2020). The formulation optimization and properties of novel oleuropein-loaded nanocarriers. J Food Sci Technol, 57(1): 327-337.
Soleimanifard, M., Sadeghi Mahoonak, A., Sepahvand, A., Heydari, R., and Farhadi, S. (2019). Spanish olive leaf extract-loaded nanostructured lipid carriers: Production and physicochemical characterization by Zetasizer, FT-IR, DTA/TGA, FE-SEM and XRD. Journal of Food Processing and Preservation, 43(7): e13994.
Šturm, L., Osojnik Črnivec, I. G., Istenič, K., Ota, A., Megušar, P., Slukan, A., and Poklar Ulrih, N. (2019). Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 116: 196-211.
Sze, S., Erickson, D., Ren, L., and Li, D. (2003). Zeta-potential measurement using the Smoluchoeski equation and the slope of the current-time relationship in electroosmotic flow. Journal of Colloid and Interface Science, 261: 402-410.
Tosi, E. A., Ré, E., Ortega, M. E., and Cazzoli, A. F. (2007). Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chemistry, 104(3): 1025-1029.
Wu, Y. H., Xu, X. W., Huo, Y. Y., Zhou, P., Zhu, X. F., Zhang, H. B., and Wu, M. (2008). Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China.  International Journal of Systematic and Evolutionary Microbiology, 58(5): 1259-1262.
Zancanela, D. C., Herculano, R. D., Funari, C. S., Marcos, C. M., Almeida, A. M. F., and Guastaldi, A. C. (2017). Physical, chemical and antimicrobial implications of the association of propolis with a natural rubber latex membrane. Materials Letters, 209: 39-42.
Zhang, J., Shen, X., Wang, K., Cao, X., Zhang, C., Zheng, H., and Hu, F. (2016). Antioxidant activities and molecular mechanisms of the ethanol extracts of Baccharis propolis and Eucalyptus propolis in RAW64.7 cells. Pharmaceutical Biology, 54(10): 2220-2235.