نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

10.22092/fooder.2024.354397.1369

چکیده

به دلیل تاثیرات منفی که اسیدهای چرب اشباع و ترانس بر سلامت انسان دارند، جایگزینی آنها با اسید‌های چرب غیراشباع و ضروری در رژیم غذایی مورد توجه قرار گرفته است. اخیرا، از روش نوین تولید اولئوژل به عنوان جایگزین چربی جامد مواد‌غذایی استفاده شده است. هدف از این مطالعه، بررسی تعامل بین دو موم کارنوبا و زنبورعسل به عنوان ژل‌ساز در سطح 5 درصد وزنی/وزنی در روغن آفتابگردان در نسبت‌های مختلف به منظور بررسی ویژگی­های فیزیکوشیمیایی اولئوژل‌ها، از جمله ظرفیت نگهداری روغن، میزان چربی جامد، سفتی و رئولوژی بافت، الگوی پراش پرتو ایکس و پروفایل اسید چرب نمونه‌‌هاست. مطلوب‌ترین اولئوژل از نظر ویژگی­های فیزیکوشیمیایی و جایگزین کردن آن به‌ جای شورتنینگ در درصد‌های مختلف نیز به عنوان چربی جامد در فرمولاسیون کوکی با هدف کاهش اسید چرب اشباع انتخاب شد. نتایج بررسی­ها نشان داد که ترکیب موم‌‌های زنبورعسل و کارنوبا در تشکیل ژل روغنی، از نظر ویژگی­های فیزیکوشیمیایی اثر هم­افزایی دارند. از نمونۀ اولئوژل تهیه شده از نسبت ۴:۱ موم زنبور عسل به موم کارنوبا، به عنوان اولئوژل مطلوب در بخش دوم برای جایگزین شورتنینگ در کوکی استفاده شد. به طور کلی، این نسبت این امکان را می­دهد که بدون تاثیر بر ویژگی­های اولئوژل بتوان میزان غلظت موم استفاده شده را کاهش داد، این موضوع منجر به کاهش احساس دهانی موم ‌گردید؛ همچنین می‌توان از آن تا سطح 50 درصد به عنوان جایگزین شورتنینگ در تهیۀ کوکی، بدون تغییر خاص در کیفیت نهایی کوکی استفاده کرد که موجب کاهش اسید چرب اشباع در محصول نهایی می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of oleogel production using sunflower oil with a mixture of carnauba and beeswaxes as a replacement for solid fats (shortening) in cookie formulation

نویسندگان [English]

  • ali ebrahimzadeh
  • Mostafa Mazaheri Tehrani
  • Maryam Ghasemi

Ferdowsi University Mashhad

چکیده [English]

The results showed that the mixture of beeswax and carnauba have a synergistic effect in forming an oily-gel, in terms of physical and chemical properties.The sample of oleogel prepared from the ratio of 4:1 beeswax to carnauba wax was used as the desired oleogel inthe second part to replace cookie shortening.In general, this ratio made it possible to reduce the concentration of wax used without affecting the properties of the oleogel; that this led to a decrease in the mouthfeel of waxes; It can also be used up to 50% as an substitution to shortening in the preparation of cookies, which reduces the saturated fatty acid content in the final product.The results showed that the mixture of beeswax and carnauba have a synergistic effect in forming an oily-gel, in terms of physical and chemical properties.

The sample of oleogel prepared from the ratio of 4:1 beeswax to carnauba wax was used as the desired oleogel in the second part to replace cookie shortening.In general, this ratio made it possible to reduce the concentration of wax used without affecting the properties of the oleogel; that this led to a decrease in the mouthfeel of waxes; It can also be used up to 50% as an substitution to shortening in the preparation of cookies, which reduces the saturated fatty acid content in the final product.

کلیدواژه‌ها [English]

  • Oleogel
  • Cookies
  • Carnauba wax
  • Beeswax
  • Synergistic effect
Aliasl khiabani, A., Tabibiazar, M., Roufegarinejad, L., Hamishehkar, H., & Alizadeh, A. (2020). Preparation and characterization of carnauba wax/adipic acid oleogel: A new reinforced oleogel for application in cake and beef burger. Food Chemistry, 333, 127446. https://doi.org/10.1016/j.foodchem.2020.127446
Blake, A. I., Toro-Vazquez, J. F., & Hwang, H.-S. (2018a). Wax oleogels. In Edible oleogels (pp. 133–171). Elsevier.
Blake, A. I., Toro-Vazquez, J. F., & Hwang, H.-S. (2018b). Wax Oleogels. In Edible Oleogels. AOCS Press. https://doi.org/10.1016/b978-0-12-814270-7.00006-x
Buitimea-Cantúa, G. V., Serna-Saldívar, S. O., Pérez-Carrillo, E., Jordânia Silva, T., Barrera-Arellano, D., & Buitimea-Cantúa, N. E. (2021). Effect of quality of carnauba wax (Copernica cerífera) on microstructure, textural, and rheological properties of soybean oil-based organogels. Lwt, 136, 110267. https://doi.org/10.1016/j.lwt.2020.110267
Callau, M., Sow-Kébé, K., Nicolas-Morgantini, L., & Fameau, A. L. (2020). Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties. Journal of Colloid and Interface Science, 560(xxxx), 874–884. https://doi.org/10.1016/j.jcis.2019.10.111
da Silva, T. L. T., Arellano, D. B., & Martini, S. (2019). Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Research International, 121(July 2018), 900–909. https://doi.org/10.1016/j.foodres.2019.01.018
Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2009). Physical properties of rice bran wax in bulk and organogels. JAOCS, Journal of the American Oil Chemists’ Society, 86(12), 1163–1173. https://doi.org/10.1007/s11746-009-1464-6
Demirkesen, I., & Mert, B. (2020). Recent developments of oleogel utilizations in bakery products. Critical Reviews in Food Science and Nutrition, 60(14), 2460–2479. https://doi.org/10.1080/10408398.2019.1649243
Devi, A., & Khatkar, B. S. (2018). Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality. Journal of Food Science and Technology, 55(1), 321–330. https://doi.org/10.1007/s13197-017-2942-8
Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., Delbaere, C., & Dewettinck, K. (2016). The feasibility of wax-based oleogel as a potential co-structurant with palm oil in low-saturated fat confectionery fillings. European Journal of Lipid Science and Technology, 118(12), 1903–1914. https://doi.org/10.1002/ejlt.201500172
Fayaz, G., Amir, S., Goli, H., Kadivar, M., Valoppi, F., & Barba, L. (2017). Pomegranate seed oil organogels structured by propolis wax, beeswax and their mixture. European Journal of Lipid Science and Technology, 119(10).
Fayaz, G., Goli, S. A. H., & Kadivar, M. (2017). A Novel Propolis Wax-Based Organogel: Effect of Oil Type on Its Formation, Crystal Structure and Thermal Properties. JAOCS, Journal of the American Oil Chemists’ Society, 94(1), 47–55. https://doi.org/10.1007/s11746-016-2915-5
Gao, Y., Li, M., Zhang, L., Wang, Z., Yu, Q., & Han, L. (2021). Preparation of rapeseed oil oleogels based on beeswax and its application in beef heart patties to replace animal fat. Lwt, 149(June), 111986. https://doi.org/10.1016/j.lwt.2021.111986
Ghotra, B. S., Dyal, S. D., & Narine, S. S. (2002). Lipid shortenings: a review. Food Research International, 35(10), 1015–1048.
Godoi, K. R. R. de, Basso, R. C., Ming, C. C., Silva, V. M. da, Cunha, R. L. da, Barrera-Arellano, D., & Ribeiro, A. P. B. (2019a). Physicochemical and rheological properties of soybean organogels: Interactions between different structuring agents. Food Research International, 124(May), 108475. https://doi.org/10.1016/j.foodres.2019.05.023
Godoi, K. R. R. de, Basso, R. C., Ming, C. C., Silva, V. M. da, Cunha, R. L. da, Barrera-Arellano, D., & Ribeiro, A. P. B. (2019b). Physicochemical and rheological properties of soybean organogels: Interactions between different structuring agents. Food Research International, 124(May), 239–251. https://doi.org/10.1016/j.foodres.2019.05.023
Hwang. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology, 26, 101657. https://doi.org/10.1016/j.bcab.2020.101657
Hwang, H., Singh, M., & Lee, S. (2016). Properties of cookies made with natural wax–vegetable oil organogels. Journal of Food Science, 81(5), C1045–C1054.
Hwang, Kim, S., Singh, M., Winkler-Moser, J. K., & Liu, S. X. (2012). Organogel formation of soybean oil with waxes. JAOCS, Journal of the American Oil Chemists’ Society, 89(4), 639–647. https://doi.org/10.1007/s11746-011-1953-2
Imai, T., Nakamura, K., & Shibata, M. (2001). Relationship between the hardness of an oil-wax gel and the surface structure of the wax crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 194(1–3), 233–237. https://doi.org/10.1016/S0927-7757(01)00799-3
INSO. (2014). Standard of vegetable and animal oils and fats, gas chromatography of methyl esters of fatty acids, part 2: preparation of methyl esters of fatty acids (edition number 1). (Edition Number 1), 201, number 13126-2.
INSO. (2017). Standard of vegetable and animal fats and oils, Standard of vegetable and animal fats andmeasurement of solid fat content using pulsed nuclear magnetic resonance (NMR) spectroscopy, part 2: indirect method (edition number 1). number 11487-2.
Jacob, J., & Leelavathi, K. (2007). Effect of fat-type on cookie dough and cookie quality. Journal of Food Engineering, 79(1), 299–305. https://doi.org/10.1016/j.jfoodeng.2006.01.058
Jana, S., & Martini, S. (2016). Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil. Food Research International, 89, 245–253. https://doi.org/10.1016/j.foodres.2016.08.003
Jang, A., Bae, W., Hwang, H. S., Lee, H. G., & Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry, 187, 525–529. https://doi.org/10.1016/j.foodchem.2015.04.110.
Jung, D., Oh, I., Lee, J. H., & Lee, S. (2020). Utilization of butter and oleogel blends in sweet pan bread for saturated fat reduction: Dough rheology and baking performance. Lwt, 125(February), 109194. https://doi.org/10.1016/j.lwt.2020.109194.
Kim, J. Y., Lim, J., Lee, J. H., Hwang, H. S., & Lee, S. (2017). Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. Journal of Food Science, 82(2), 445–452. https://doi.org/10.1111/1750-3841.13583.
Li, S., Wu, G., Li, X., Jin, Q., Wang, X., & Zhang, H. (2021a). Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chemistry, 356, 129667.
Li, S., Wu, G., Li, X., Jin, Q., Wang, X., & Zhang, H. (2021b). Roles of gelator type and gelation technology on texture and sensory properties of cookies prepared with oleogels. Food Chemistry, 356(March), 129667. https://doi.org/10.1016/j.foodchem.2021.129667.
Mert, B., & Demirkesen, I. (2016a). Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT - Food Science and Technology, 68, 477–484. https://doi.org/10.1016/j.lwt.2015.12.063.
Mert, B., & Demirkesen, I. (2016b). Reducing saturated fat with oleogel/shortening blends in a baked product. In Food Chemistry (Vol. 199, Issue December). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2015.12.087.
Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368–377.
Öğütcü, M., Arifoğlu, N., & Yilmaz, E. (2015). Storage stability of cod liver oil organogels formed with beeswax and carnauba wax. International Journal of Food Science and Technology, 50(2), 404–412. https://doi.org/10.1111/ijfs.12612
Okuro, P. K., Tavernier, I., Bin Sintang, M. D., Skirtach, A. G., Vicente, A. A., Dewettinck, K., & Cunha, R. L. (2018). Synergistic interactions between lecithin and fruit wax in oleogel formation. Food and Function, 9(3), 1755–1767. https://doi.org/10.1039/c7fo01775h
Öʇütcü, M., & Yilmaz, E. (2015a). Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. International Journal of Food Properties, 18(8), 1741–1755. https://doi.org/10.1080/10942912.2014.933352
Öʇütcü, M., & Yilmaz, E. (2015b). Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. International Journal of Food Properties, 18(8), 1741–1755. https://doi.org/10.1080/10942912.2014.933352
Öʇütcü, M., & Yilmaz, E. (2015c). Comparison of the pomegranate seed oil organogels of carnauba wax and monoglyceride. Journal of Applied Polymer Science, 132(4), 10–13. https://doi.org/10.1002/app.41343
Pakseresht, S., & Mazaheri Tehrani, M. (2020). Advances in Multi-component Supramolecular Oleogels- a Review. Food Reviews International, 00(00), 1–23. https://doi.org/10.1080/87559129.2020.1742153
Pareyt, B., Talhaoui, F., Kerckhofs, G., Brijs, K., Goesaert, H., Wevers, M., & Delcour, J. A. (2009). The role of sugar and fat in sugar-snap cookies: Structural and textural properties. Journal of Food Engineering, 90(3), 400–408. https://doi.org/10.1016/j.jfoodeng.2008.07.010
Sánchez-Becerril, M., Marangoni, A. G., Perea-Flores, M. J., Cayetano-Castro, N., Martínez-Gutiérrez, H., Andraca-Adame, J. A., & Pérez-Martínez, J. D. (2018). Characterization of the micro and nanostructure of the candelilla wax organogels crystal networks. Food Structure, 16(January), 1–7. https://doi.org/10.1016/j.foostr.2018.02.001
Serrato-Palacios, L. L., Toro-Vazquez, J. F., Dibildox-Alvarado, E., Aragón-Piña, A., Morales-Armenta, M. D. R., Ibarra-Junquera, V., & Pérez-Martínez, J. D. (2015). Phase behavior and structure of systems based on mixtures of n-hentriacontane and melissic acid. JAOCS, Journal of the American Oil Chemists’ Society, 92(4), 533–540. https://doi.org/10.1007/s11746-015-2623-6
Singh, A., Auzanneau, F. I., & Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. Food Research International, 97, 307–317. https://doi.org/10.1016/j.foodres.2017.04.022
Tavernier, I., Doan, C. D., Van De Walle, D., Danthine, S., Rimaux, T., & Dewettinck, K. (2017). Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC Advances, 7(20), 12113–12125. https://doi.org/10.1039/c6ra27650d
Winkler-Moser, J. K., Anderson, J., Felker, F. C., & Hwang, H. S. (2019). Physical Properties of Beeswax, Sunflower Wax, and Candelilla Wax Mixtures and Oleogels. JAOCS, Journal of the American Oil Chemists’ Society, 96(10), 1125–1142. https://doi.org/10.1002/aocs.12280
Yang, S., Yang, G., Chen, X., Chen, J., & Liu, W. (2020). Interaction of monopalmitate and carnauba wax on the properties and crystallization behavior of soybean oleogel. Grain & Oil Science and Technology, 3(2), 49–56. https://doi.org/10.1016/j.gaost.2020.05.001
Yi, B. R., Kim, M. J., Lee, S. Y., & Lee, J. H. (2017). Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Science and Biotechnology, 26(1), 79–87. https://doi.org/10.1007/s10068-017-0011-8
Yilmaz, E., & Öğütcü, M. (2014). Comparative Analysis of Olive Oil Organogels Containing Beeswax and Sunflower Wax with Breakfast Margarine. Journal of Food Science, 79(9), E1732–E1738. https://doi.org/10.1111/1750-3841.12561.
Yılmaz, E., & Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. JAOCS, Journal of the American Oil Chemists’ Society, 91(6), 1007–1017. https://doi.org/10.1007/s11746-014-2434-1.
Yılmaz, E., & Öğütcü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food & Function, 6(4), 1194–1204.
Zhao, M., Lan, Y., Cui, L., Monono, E., Rao, J., & Chen, B. (2020a). Formation, characterization, and potential food application of rice bran wax oleogels: Expeller-pressed corn germ oil versus refined corn oil. Food Chemistry, 309, 125704. https://doi.org/10.1016/j.foodchem.2019.125704
Zhao, M., Lan, Y., Cui, L., Monono, E., Rao, J., & Chen, B. (2020b). Physical properties and cookie-making performance of oleogels prepared with crude and refined soybean oil: A comparative study. Food and Function, 11(3), 2498–2508. https://doi.org/10.1039/c9fo02180a.