نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته حشره شناسی کشاورزی، گروه گیاهپزشکی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 عضوهیات علمی دانشگاه تهران

3 استاد، سازمان تحقیقات، آموزش و ترویج کشاورزی، مؤسسه تحقیقات علوم باغبانی، پژوهشکده میوه‌های معتدله و سردسیری،

4 دانشیار مهندسی هسته ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

5 عضو هیات علمی/دانشکده کشاورزی کرج

10.22092/fooder.2024.365515.1388

چکیده

این پژوهش برای بررسی اثرات شاخص‌های استاندارد انبارداری خرما بر فراوانی آفات انباری در شش استان خرماخیز ایران در سال 1401 انجام شد. برای طراحی مدل شبکه عصبی مصنوعی در این پژوهش، از سه لایه ورودی، خروجی و پنهان استفاده شده است. نتایج نشان داد که شاخص‌های چیدمان محصول شامل پالت، ظروف نگهداری، تفکیک ارقام، فاصله‌گذاری، قفسه‌بندی به ترتیب دارای بیشترین اثر بر شدت آلودگی O. surinaemensis، E. elutella، E. elutella، E. elutella و E. calidella بودند. شاخص‌های ساختمانی شامل کف‌سازی، دیوارهای داخلی، گذرگاه شیبدار در مبادی ورودی، دسترسی مناسب به فضاهای داخلی، وجود بارانداز به ترتیب بیشترین تأثیر را بر آلودگی D. melanogaster، D. melanogaster، E. kuhniella، O. surinaemensis و E. kuhniella داشتند. شاخص‌های تنظیم شرایط محیطی انبار شامل سیستم‌های تهویه، دما، رطوبت، بهداشت محیط و کف انبار به ترتیب بیشترین تأثیر را بر آلودگی E. kuhniella، D. melanogaster، D. melanogaster، E. kuhniella و D. melanogaster داشتند. مدل شبکه عصبی شامل 28 سیناپس بین لایه‌های مختلف بود. داده‌های سیستم روشنایی، دسترسی مناسب، فاصله‌گذاری و کف‌سازی به ترتیب به میزان 100، 9/94 ، 1/77و 2/60 درصد در پیش‌بینی تراکم جمعیت آفات انباری مؤثر بوده و بیشترین اهمیت را بر وقوع آفات انباری داشتند. الگوریتم حاصل از شبکه عصبی اهمیت رعایت استانداردهای انبارداری را در مدیریت آفات انباری خرما مشخص نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modeling the effect of warehouse hygiene on the population of date-stored pests using an artificial neural network

نویسندگان [English]

  • Maryam Jalili Moghadam 1
  • Jamasb Nozari 2
  • Masoud Latifian 3
  • Seyed Pezhman Shirmardi 4
  • Mohammad Mousavi 5

1 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Member of the academic faculty of Tehran University

3 Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.

4 Associate professor of nuclear engineering, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

5 Dept. Food Sci. Tecnol. Univ. Tehran

چکیده [English]

This study investigated the effects of common date-storing indicators on the frequency of store pests in six date-producing provinces of Iran in 2022. The research employs an artificial neural network model with three layers: input, hidden, and output. Each layer contains a group of nerve cells which are generally related to all the neurons of other layers, including compliance and non-compliance with the storage index and the unobservable factor resulting from factor analysis. The results showed that the indicators of product layout, including pallets, storage containers, cultivars separation, spacing, and shelving, respectively, have the greatest effect on the severity of O. surinaemensis, E. elutella, E. elutella, E. elutella, and E. calidella. Building indicators, including flooring, internal walls, sloping passage at the entrance, proper access to internal spaces, and the presence of a dock have the greatest effect on the contamination of D. melanogaster, D. melanogaster, E. kuhniella, O. surinaemensis, and E. kuhniella. The indicators of setting the environmental conditions of the warehouse, including ventilation systems, temperature, humidity, environmental hygiene, and warehouse floor, respectively, had the greatest effect on the contamination of E. kuhniella, D. melanogaster, D. melanogaster, E. kuhniella, and D. melanogaster. The neural network model included 28 synapses between different layers. The lighting system, proper access, spacing, and flooring are effectively predict warehouse pests’ population density by 100%, 94.9%, 77.1%, and 60.2%, respectively. These factors are crucial in pest infestations. The algorithm obtained from the neural network determined the importance of complying with storage standards in managing date pests.

کلیدواژه‌ها [English]

  • Damage
  • Prediction
  • Simulation
  • Standard
  • Storage
Abd El-Aziz, S. E. (2011). Control strategies of stored product pests. J. Entomol, 8(2), 101-122.
Adler, C., Athanassiou, C., Carvalho, M. O., Emekci, M., Gvozdenac, S., Hamel, D., ... & Trematerra, P. (2022). Changes in the distribution and pest risk of stored product insects in Europe due to global warming: Need for pan-European pest monitoring and improved food-safety. Journal of Stored Products Research, 97, 101977.
Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2021). Quality inspection of food and agricultural products using artificial intelligence. Advances in Agricultural and Food Research Journal, 2(2).
Banga, K. S., Mohapatra, D., Babu, V. B., Giri, S. K., & Bargale, P. C. (2020). Assessment of bruchids density through bioacoustic detection and artificial neural network (ANN) in bulk stored chickpea and green gram. Journal of stored products research, 88, 101667.
Bianconi, A., Zuben, C.J.V., Serapião, A.B.D.S., Govone, J.S. (2010). Artificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephala. Journal of Insect Science, 10(1): 58.
Bell, C. H. (2014). A review of insect responses to variations encountered in the managed storage environment. Journal of stored products research, 59, 260-274.
Cox, P. D., & Collins, L. E. (2002). Factors affecting the behaviour of beetle pests in stored grain, with particular reference to the development of lures. Journal of Stored Products Research, 38(2), 95-115.
Da Silva, I.N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L.H.B., dos Reis Alves, S.F., da Silva, I.N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L.H.B., dos Reis Alves, S.F. (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer International Publishing.
Elik, A., Yanik, D. K., Istanbullu, Y., Guzelsoy, N. A., Yavuz, A., & Gogus, F. (2019). Strategies to reduce post-harvest losses for fruits and vegetables. Strategies, 5(3), 29-39.
Günther, F., Fritsch, S. (2010). Neuralnet: training of neural networks. R J., 2(1):30.
Heeps, J. (2016). Insect management for food storage and processing. Elsevier. 231pp.
Kaur, M., & Kaur, J. (2022). Performance score to estimate agricultural market hygiene and infrastructure. Journal of Agriculture and Food Research, 9, 100332.
Loganathan, M., Akash, U., Durgalakshmi, R., & Anandharamakrishnan, C. (2018). Constraints in grain quality management: a warehouse journey. Julius-Kühn-Archiv, (463).
Lutz, É., & Coradi, P. C. (2022). Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. Measurement, 188, 110609.
Morrison III, W. R., Bruce, A., Wilkins, R. V., Albin, C. E., & Arthur, F. H. (2019). Sanitation improves stored product insect pest management. Insects, 10(3), 77.
Park, Y.S., Rabinovich, J., Lek, S. (2007). Sensitivity analysis and stability patterns of two-species pest models using artificial neural networks. Ecological modelling, 204(3-4): 427-438.
Querner, P. (2015). Insect pests and integrated pest management in museums, libraries and historic buildings. Insects, 6(2), 595-607.
Santiago, R. M. C., Rabano, S. L., Billones, R. K. D., Calilung, E. J., Sybingco, E., & Dadios, E. P. (2017, November). Insect detection and monitoring in stored grains using MFCCs and artificial neural network. In TENCON 2017-2017 IEEE Region 10 Conference (pp. 2542-2547). IEEE.
Singh, T., Bhat, M. M., & Khan, M. A. (2009). Insect adaptations to changing environments-temperature and humidity. International Journal of Industrial Entomology, 19(1), 155-164.
Sudhakar, N., Karthikeyan, G., RajhaViknesh, M., Saranya, A. S., & Shurya, R. (2020). Technological Advances in Agronomic Practices of Seed Processing, Storage, and Pest Management: An Update. Advances in Seed Production and Management, 359-398.
Tay, A., Lafont, F., Balmat, J.F. (2021). Forecasting pest risk level in roses greenhouse: Adaptive neuro-fuzzy inference system vs artificial neural networks. Information Processing in Agriculture, 8(3):386-397.
Ul Rahman, J., Makhdoom, F., Ali, A., Danish, S. (2023). Mathematical modeling and simulation of biophysics systems using neural network. International Journal of Modern Physics B, p.2450066.
Wang, J., Bu, Y. (2022). Internet of Things‐based smart insect monitoring system using a deep neural network. IET Networks, 11(6):245-256.
Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C. )2018(. Insect detection and classification based on an improved convolutional neural network. Sensors, 18(12): 4169.
Zhang, W. and Zhang, X. )2008(. Neural network modeling of survival dynamics of holometabolous insects: A case study. Ecological Modelling, 211(3-4), pp.433-443.