نوع مقاله : مروری

نویسنده

Department of biology

10.22092/fooder.2024.364914.1383

چکیده

اسپیرولینا یک ریز جلبک از شاخه سیانوفیت‌ها، منبع غنی از مواد مغذی آلی است. از این ریز جلبک به‌عنوان پروبیوتیک و مکمل غذایی فراسودمند که موجب افزایش رشد باکتری‌های پروبیوتیکی روده می‌شود، در صنایع غذایی استفاده‌های بسیاری می‌شود. در نتیجه هدف از این مقاله، مروری بر خواص پروبیوتیک اسپیرولینا در سلامت صنایع غذایی است.

برای نگارش این مقاله، هم از تجربیات و مقالات نویسندگان مقاله و هم از جدیدترین مقالات موجود در پایگاه های اطلاعاتی Web of Science، Pub Med، Google Scholar، Scopus و ScienceDirectاستفاده گردیده است.

اسپیرولینا شامل بیش از 78 درصد پروتئین، ویتامین، 4 تا 7 درصد چربی، مواد معدنی، کربوهیدرات و ریزمغذی‌های بسیار است که در درمان بیماری‌هایی مانند سرطان، فشارخون، دیابت، کم‌خونی و غیره بسیار شفابخش عمل کرده است. اسپیرولینا با تولید اگزوپلی ساکاریدهای خارج سلولی نه‌تنها موجب افزایش تعداد و رشد باکتری‌های اسیدلاکتیک مانند Lactobacillus bulgaricus، Streptococcus thermophilus، Lactococcus lactis، Lactobacillus acidophilus و Lactobacillus casei می‌شود، بلکه با افزایش زنده ماندن باکتری‌های پروبیوتیک در مدت تولید و ذخیره‌سازی محصولات لبنی تخمیر شده نقش سودمندی را در صنایع غذایی ایفا می‌کند.

ترکیب ریز جلبکها و پروبیوتیک ها منجر به تولید محصولات لبنی تخمیر شده ای می شود که نه تنها باعث افزایش کیفیت مواد غذایی می شود، بلکه با افزایش تعداد و زمان ماندگاری باکتری های پروبیوتیک، ارزش غذایی آنها را برای مصرف کنندگان بالا می برند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Properties of microalgae probiotics in health of food industry

نویسنده [English]

  • Bahareh Nowruzi

Department of biology

چکیده [English]

Spirulina is a microalgae of the cyanophyte division, a rich source of organic nutrients. This microalgae is widely used in the food industry as a probiotic and a beneficial food supplement that increases the growth of intestinal probiotic bacteria. Therefore, the purpose of this article is to review the probiotic properties of spirulina in the health of food industry.

A detailed search was carried out, both the experience and articles of authors and the latest articles in the PubMed, Web of Science, Google Scholar, ScienceDirect, Scopus, Medline, and Scientific Information Database databases.

Spirulina contains more than 78 percent protein, vitamins, 4 to 7 percent fat, minerals, carbohydrates and many micronutrients that have been very healing in the treatment of diseases such as cancer, hypertension, diabetes, anemia, etc. By producing extracellular exopolysaccharides, Spirulina not only increases the number and growth of lactic acid bacteria such as Lactobacillus bulgaricus, Streptococcus thermophilus, Lactococcus lactis, Lactobacillus acidophilus and Lactobacillus casei, but also increases bacterial viability and survival in bacteria. Fermented dairy products play a beneficial role in the food industry.

The combination of microalgae and probiotics leads to the production of fermented dairy products that not only increase the quality of food, but also increase their nutritional value for consumers by increasing the number and shelf life of probiotic bacteria.

کلیدواژه‌ها [English]

  • prebiotic
  • probiotic
  • Spirulina
  • food industry
Akalin, A., Unal, G., & Dalay, M. (2009). Influence of Spirulina platensis biomass on microbiological viability in traditional and probiotic yogurts during refrigerated storage. Italian Journal of Food Science, 21(3), 357-364.
Alizadeh Khaledabad, M., Ghasempour, Z., Moghaddas Kia, E., Rezazad Bari, M., & Zarrin, R. (2020). Probiotic yoghurt functionalised with microalgae and Zedo gum: chemical, microbiological, rheological and sensory characteristics. International Journal of Dairy Technology, 73(1), 67-75.
Anvara, A. A., & Nowruzib, B. Bioactive Properties of Spirulina: A Review.
Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719-728.
Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi‐Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Comprehensive reviews in food science and food safety, 12(2), 144-154.
Bhowmik, D., Dubey, J., & Mehra, S. (2009). Probiotic efficiency of Spirulina platensis-stimulating growth of lactic acid bacteria. World Journal of Dairy & Food Sciences, 4(2), 160-163.
Camacho, F., Macedo, A., & Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Marine drugs, 17(6), 312.
de Caire, G. Z., Parada, J. L., Zaccaro, M. C., & de Cano, M. M. S. (2000). Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World Journal of Microbiology and Biotechnology, 16(6), 563-565.
Fadaei, V., Mohamadi-Alasti, F., & Khosravi-Darani, K. (2013). Influence of Spirulina platensis powder on the starter culture viability in probiotic yoghurt containing spinach during cold storage. European Journal of Experimental Biology, 3(3), 389-393.
Golmakani, M.-T., Soleimanian-Zad, S., Alavi, N., Nazari, E., & Eskandari, M. H. (2019). Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. Journal of Applied Phycology, 31(2), 1085-1094.
Güldaş, M., & Irkin, R. (2010). Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk.
Gupta, S., Gupta, C., Garg, A., & Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. J Microbiol Exp, 4(4), 00120.
Jafari Porzani, S., Konur, O., & Nowruzi, B. (2021). Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. Journal of Biomolecular Structure and Dynamics, 1-17.
Kavimandan, A. (2015). Incorporation of Spirulina platensis into probiotic fermented dairy products. Int. J. Dairy Sci, 10, 1-11.
Malcata, F., Macedo, Â., & Camacho, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review.
Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., & Bernini, V. (2021). Solid-state fermentation of Arthrospira platensis to implement new food products: evaluation of stabilization treatments and bacterial growth on the volatile fraction. Foods, 10(1), 67.
Mazinani, S., Fadaei, V., & Khosravi‐Darani, K. (2016). Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. Journal of Food Processing and Preservation, 40(6), 1318-1324.
Mocanu, G., Botez, E., Nistor, O. V., Andronoiu, D., & Vlăsceanu, G. (2013). Influence of Spirulina platensis biomass over some starter culture of lactic bacteria. Journal of Agroalimentary Processes and Technologies, 19(4), 474-479.
Niccolai, A., Shannon, E., Abu-Ghannam, N., Biondi, N., Rodolfi, L., & Tredici, M. R. (2019). Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. Journal of Applied Phycology, 31(2), 1077-1083.
Nowruzi, B., Sarvari, G., & Blanco, S. (2020a). Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine (pp. 441-453). Elsevier.
Nowruzi, B., Sarvari, G., & Blanco, S. (2020b). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959.
Pan-Utai, W., Atkonghan, J., Onsamark, T., & Imthalay, W. (2020). Effect of Arthrospira Microalga Fortification on Physicochemical Properties of Yogurt. Current Research in Nutrition and Food Science Journal, 8(2), 531-540.
Parada, J. L., de Caire, G. Z., de Mulé, M. a. C. Z., & de Cano, M. M. S. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International journal of food microbiology, 45(3), 225-228.
Patel, A. K., Singhania, R. R., Awasthi, M. K., Varjani, S., Bhatia, S. K., Tsai, M.-L., . . Dong, C.-D. (2021). Emerging prospects of macro-and microalgae as prebiotic. Microbial Cell Factories, 20(1), 1-16.
Patel, P., Jethani, H., Radha, C., Vijayendra, S., Mudliar, S. N., Sarada, R., & Chauhan, V. S. (2019). Development of a carotenoid enriched probiotic yogurt from fresh biomass of Spirulina and its characterization. Journal of food science and technology, 56(8), 3721-3731.
Pina-Pérez, M. C., Brück, W., Brück, T., & Beyrer, M. (2019). Microalgae as healthy ingredients for functional foods. In The role of alternative and innovative food ingredients and products in consumer wellness (pp. 103-137). Elsevier.
Varga, L., Szigeti, J., Kovács, R., Földes, T., & Buti, S. (2002). Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Journal of Dairy Science, 85(5), 1031-1038.
Ahda, M., Suhendra, & Permadi, A. (2024). Spirulina platensis microalgae as high protein-based products for diabetes treatment. Food Reviews International, 40(6), 1796-1804.
Akalin, A., Unal, G., & Dalay, M. (2009). Influence of Spirulina platensis biomass on microbiological viability in traditional and probiotic yogurts during refrigerated storage. Italian Journal of Food Science, 21(3), 357-364.
Alizadeh Khaledabad, M., Ghasempour, Z., Moghaddas Kia, E., Rezazad Bari, M., & Zarrin, R. (2020). Probiotic yoghurt functionalised with microalgae and Zedo gum: chemical, microbiological, rheological and sensory characteristics. International Journal of Dairy Technology, 73(1), 67-75.
Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719-728.
Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi‐Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Comprehensive reviews in food science and food safety, 12(2), 144-154.
Bhowmik, D., Dubey, J., & Mehra, S. (2009). Probiotic efficiency of Spirulina platensis-stimulating growth of lactic acid bacteria. World Journal of Dairy & Food Sciences, 4(2), 160-163.
Camacho, F., Macedo, A., & Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Marine drugs, 17(6), 312.
de Caire, G. Z., Parada, J. L., Zaccaro, M. C., & de Cano, M. M. S. (2000). Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World Journal of Microbiology and Biotechnology, 16(6), 563-565.
Fadaei, V., Mohamadi-Alasti, F., & Khosravi-Darani, K. (2013). Influence of Spirulina platensis powder on the starter culture viability in probiotic yoghurt containing spinach during cold storage. European Journal of Experimental Biology, 3(3), 389-393.
Golmakani, M.-T., Soleimanian-Zad, S., Alavi, N., Nazari, E., & Eskandari, M. H. (2019). Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. Journal of Applied Phycology, 31(2), 1085-1094.
Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The true value of Spirulina. Journal of agricultural and food chemistry, 68(14), 4109-4115.
Güldaş, M., & Irkin, R. (2010). Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk.
Gupta, S., Gupta, C., Garg, A., & Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. J Microbiol Exp, 4(4), 00120.
Jafari Porzani, S., Konur, O., & Nowruzi, B. (2021). Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. Journal of Biomolecular Structure and Dynamics, 1-17.
Kavimandan, A. (2015). Incorporation of Spirulina platensis into probiotic fermented dairy products. Int. J. Dairy Sci, 10, 1-11.
Khan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and therapeutic potential of Spirulina. Current pharmaceutical biotechnology, 6(5), 373-379.
Kulshreshtha, A., Jarouliya, U., Bhadauriya, P., Prasad, G., & Bisen, P. (2008). Spirulina in health care management. Current pharmaceutical biotechnology, 9(5), 400-405.
Malcata, F., Macedo, Â., & Camacho, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review.
Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., & Bernini, V. (2021). Solid-state fermentation of Arthrospira platensis to implement new food products: evaluation of stabilization treatments and bacterial growth on the volatile fraction. Foods, 10(1), 67.
Mazinani, S., Fadaei, V., & Khosravi‐Darani, K. (2016). Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. Journal of Food Processing and Preservation, 40(6), 1318-1324.
Mocanu, G., Botez, E., Nistor, O. V., Andronoiu, D., & Vlăsceanu, G. (2013). Influence of Spirulina platensis biomass over some starter culture of lactic bacteria. Journal of Agroalimentary Processes and Technologies, 19(4), 474-479.
Niccolai, A., Shannon, E., Abu-Ghannam, N., Biondi, N., Rodolfi, L., & Tredici, M. R. (2019). Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. Journal of Applied Phycology, 31(2), 1077-1083.
Nowruzi, B., Anvar, S. A. A., & Shafaroodi, A. (2024). Study of phycocyanin powder on probiotic bacteriologically and antioxidant properties of yogurt at 4° C. Nutrire, 49(2), 42.
Nowruzi, B., Sarvari, G., & Blanco, S. (2020a). Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine (pp. 441-453). Elsevier.
Nowruzi, B., Sarvari, G., & Blanco, S. (2020b). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959.
Pan-Utai, W., Atkonghan, J., Onsamark, T., & Imthalay, W. (2020). Effect of Arthrospira Microalga Fortification on Physicochemical Properties of Yogurt. Current Research in Nutrition and Food Science Journal, 8(2), 531-540.
Parada, J. L., de Caire, G. Z., de Mulé, M. a. C. Z., & de Cano, M. M. S. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International journal of food microbiology, 45(3), 225-228.
Patel, A. K., Singhania, R. R., Awasthi, M. K., Varjani, S., Bhatia, S. K., Tsai, M.-L., . .. Dong, C.-D. (2021). Emerging prospects of macro-and microalgae as prebiotic. Microbial Cell Factories, 20(1), 1-16.
Patel, P., Jethani, H., Radha, C., Vijayendra, S., Mudliar, S. N., Sarada, R., & Chauhan, V. S. (2019). Development of a carotenoid enriched probiotic yogurt from fresh biomass of Spirulina and its characterization. Journal of food science and technology, 56(8), 3721-3731.
Pina-Pérez, M. C., Brück, W., Brück, T., & Beyrer, M. (2019). Microalgae as healthy ingredients for functional foods. In The role of alternative and innovative food ingredients and products in consumer wellness (pp. 103-137). Elsevier.
Shah, M. A. R., Zhu, F., Cui, Y., Hu, X., Chen, H., Kayani, S.-I., & Huo, S. (2024). Mechanistic insights into the nutritional and therapeutic potential of Spirulina (Arthrospira) spp.: Challenges and opportunities. Trends in Food Science & Technology, 104648.
Valikboni, S. Q., Anvar, S. A. A., & Nowruzi, B. (2024). Study of the effect of phycocyanin powder on physicochemical characteristics of probiotic acidified feta-type cheese during refrigerated storage. Nutrire, 49(2), 41.
Varga, L., Szigeti, J., Kovács, R., Földes, T., & Buti, S. (2002). Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Journal of Dairy Science, 85(5), 1031-1038.