نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات فراوری تولیدات دامی، موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 دانشجوی کارشناسی ارشد علوم و صنایع غذایی، موسسه آموزش عالی خزر محمودآباد، ایران

10.22092/fooder.2024.363260.1372

چکیده

اکریل­آمید ماده ای سرطان زا و خطرناک است که حین فراوری مواد غذایی در دمای بالا طی واکنش مایلارد تولید می­شود. روش­های اندازه گیری کمی و کیفی اکریل­آمید در مواد غذایی اغلب نیازمند نیروی مختصص و هزینه زیادی است، از این رو سعی شده است روشی نوین برای آنالیز اکریل­آمید در همبرگر ابداع شود. در این مقاله، حسگر زیستی برپایۀ نانوذرات طلا و DNA دو رشته FAM دار (FAM-dsDNA) برای تشخیص اکریل­آمید طراحی شد. در حضور اکریل­آمید، ssDNA با اکریل­آمید پیوند می­دهد و سبب ایجاد کمپلکس ssDNA اکریل­آمید می­شود و رشته مکمل FAM دار آزاد (FAM-csDNA) بر سطح نانوذرات طلا جذب و خاموش می­گردد. آنالیز نانوذرۀ طلا سنتز شده با SEM و DLS نشان داد که نانوذرات طلا به خوبی توزیع شده اند و قطر متوسط آن­ها ­13 تا 17 نانومتر است. در شرایط بهینه (اتصال DNA و اکریل­آمید پس از 80 دقیقه، بیشترین میزان هیبریدیزاسیون بین ssDNA و FAM-csDNA پس از 20 دقیقه، بیشترین میزان هم­یوغی (کانجوگیشن) FAM-csDNA و 15 نانومولار نانوذره طلا)، این روش آنالیتیکی فلوئوروسانسی، حساسیت بالایی را نسبت به اکریل­آمید در همبرگر از خود نشان داد و دارای پاسخ خطی بی نظیر (0.1 تا 8-10 مولار) و حد تشخیص کم (9-10 ×3.34 مولار) بود. از این رو می­توان گفت که حسگر زیستی طراحی شده، در مقایسه با روش رایج، نه تنها به نیروی کار متخصص و صرف وقت و هزینۀ زیاد نیاز ندارد، بلکه جایگزین خوبی است برای روش­های کروماتوگرافی در تشخیص اکریل­آمید در محصولات غذایی.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication a biosensor based on double-stranded DNA and gold nanoparticles to detect acrylamide in hamburger

نویسندگان [English]

  • Maryam Asnaashari 1
  • Reza Farahmandfar 2
  • Mohammad Solgi 3

1 Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran

3 MSc Student. Food Science and Technology. Khazar Institute of Higher Education, Mahmoodabad, Iran

چکیده [English]

Acrylamide is a hazardous carcinogen which is produced during high temperature food processing by Millard reaction. As quantitative and qualitative methods of acrylamide detection in food products often require skilled technicians and high cost. In this paper, the biosensor based on gold nanoparticles and FAM-labeled double-stranded DNA (FAM-dsDNA) is fabricated. In the presence of acrylamide, the ssDNA binds to acrylamide and causes ssDNA-acrylamide complex and its release FAM-labeled complementary strand DNA (FAM-csDNA) adsorbs on the surface of gold nanoparticles and quenches. Analysis of synthesized gold nanoparticles by SEM and DLS showed that gold nanoparticles were well distributed with diameter of 13-17 nm. Under optimized conditions (The binding of DNA and acrylamide after 80 minutes, the highest hybridization between ssDNA and FAM-csDNA after 20 minutes of incubation time, the most conjugation between FAM-csDNA and gold nanoparticles at 15 nm), this fluorescent analytical approach showed high selectivity toward acrylamide in potato fries with marvelous linear response (0.1 to 10-8 M) and low limit of detection (3.34×10-9 M). Therefore, it can be admitted that the designed sensors, in contrast to the common method, not only do not require specialized labor and spend much time and cost, but can also be a good alternative to chromatography methods for acrylamide detection in food products.

کلیدواژه‌ها [English]

  • Acrylamide
  • Biosensor
  • Limit of detection
  • Hamburger
  • Fluorescence
Asnaashari, M., Esmaeilzadeh Kenari, R., Farahmandfar, R., Taghdisi, S. M., & Abnous, K. (2018). Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sensors and Actuators B: Chemical, 265, 339-345. doi:https://doi.org/10.1016/j.snb.2018.03.083
Asnaashari, M., Kenari, R. E., Taghdisi, S. M., Abnous, K., & Farahmandfar, R. (2023). A novel fluorescent DNA sensor for acrylamide detection in food samples based on single-stranded DNA and GelRed. Journal of Fluorescence, 34, 2845–2860. doi: https://doi.org/10.1007/s10895-023-03479-7
Bethke, P. C., & Bussan, A. J. (2013). Acrylamide in Processed Potato Products. American Journal of Potato Research, 90(5), 403-424. doi:10.1007/s12230-013-9321-4
Claeys, W. L., De Vleeschouwer, K., & Hendrickx, M. E. (2005). Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnology Progress, 21(5), 1525-1530.
Elbashir, A. A., Omar, M. M. A., Ibrahim, W. A. W., Schmitz, O. J., & Aboul-Enein, H. Y. (2014). Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Critical reviews in analytical chemistry, 44(2), 107-141.
Emrani, A. S., Danesh, N. M., Lavaee, P., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2016). Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chemistry, 190, 115-121.
Garabagiu, S., & Mihailescu, G. (2011). Simple hemoglobin–gold nanoparticles modified electrode for the amperometric detection of acrylamide. Journal of electroanalytical chemistry, 659(2), 196-200.
Ghasemian, S., Rezaei, K., Abedini, R., Poorazarang, H., & Ghaziani, F. (2014). Investigation of different parameters on acrylamide production in the fried beef burger using Taguchi experimental design. Journal of food science and technology, 51, 440-448.
Hu, Q., Xu, X., Li, Z., Zhang, Y., Wang, J., Fu, Y., & Li, Y. (2014). Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosensors and Bioelectronics, 54, 64-71. doi:http://dx.doi.org/10.1016/j.bios.2013.10.046
Hu, Q., Xu, X., Li, Z., Zhang, Y., Wang, J., & Li, Y. (2013). Rapid detection of acrylamide in food using a fluorescent sensing method based on functional CdSe/ZnS quantum dots. Paper presented at the SENSORS, 2013 IEEE.
Huang, S., Lu, S., Huang, C., Sheng, J., Zhang, L., Su, W., & Xiao, Q. (2016). An electrochemical biosensor based on single-stranded DNA modified gold electrode for acrylamide determination. Sensors and Actuators B: Chemical, 224, 22-30.
Khoshbin, Z., Moeenfard, M., Abnous, K., & Taghdisi, S. M. (2023). Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: Smartphone readout strategy for on-site food control. Food Chemistry, 399, 133983.
Krajewska, A., Radecki, J., & Radecka, H. (2008). A voltammetric biosensor based on glassy carbon electrodes modified with single-walled carbon nanotubes/hemoglobin for detection of acrylamide in water extracts from potato crisps. Sensors, 8(9), 5832-5844.
Krishnakumar, T., & Visvanathan, R. (2014). Acrylamide in food products: a review. Journal of Food Processing and Technology, 5(7).
Li, C., Ya, Y., & Zhan, G. (2010). Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. Colloids and Surfaces B: Biointerfaces, 76(1), 340-345.
Li, D., Xu, Y., Zhang, L., & Tong, H. (2014). A label-free electrochemical biosensor for acrylamide based on DNA immobilized on graphene oxide-modified glassy carbon electrode. Int. J. Electrochem. Sci, 9, 7217-7227.
Liu, C., Luo, F., Chen, D., Qiu, B., Tang, X., Ke, H., & Chen, X. (2014). Fluorescence determination of acrylamide in heat-processed foods. Talanta, 123, 95-100.
Mojska, H., Gielecińska, I., Zielińska, A., Winiarek, J., & Sawicki, W. (2016). Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. Journal of Exposure Science and Environmental Epidemiology, 26(3), 288-295.
Oracz, J., Nebesny, E., & Żyżelewicz, D. (2011). New trends in quantification of acrylamide in food products. Talanta, 86, 23-34.
Pattnayak, B. C., & Mohapatra, S. (2023). A smartphone-assisted ultrasensitive detection of acrylamide in thermally processed snacks using CQD@ Au NP integrated FRET sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286, 122009.
Ramezani, M., Danesh, N. M., Lavaee, P., Abnous, K., & Taghdisi, S. M. (2015). A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosensors and Bioelectronics, 70, 181-187.
Saeedian, M., Niazmand, R., Ajam, M. (2019). Chemical characteristics and the amount of acrylamide in burger: the effect of meat amount and powdered milk. Journal of food science and technology, ( Iran) 91 (16), 337-346.
Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., & Letsinger, R. L. (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc, 120(9), 1959-1964.
Tekkeli, S. E. K., Önal, C., & Önal, A. (2012). A review of current methods for the determination of acrylamide in food products. Food Analytical Methods, 5(1), 29-39.
Wang, Q., Ji, J., Jiang, D., Wang, Y., Zhang, Y., & Sun, X. (2014). An electrochemical sensor based on molecularly imprinted membranes on a P-ATP–AuNP modified electrode for the determination of acrylamide. Analytical Methods, 6(16), 6452-6458.
Xu, N., Ma, X., Cao, Y., Wang, H., Wu, H., Zheng, H., . . . Sun, C. (2023). A novel fluorescent structure-switching aptasensor for the sensitive detection of acrylamide based on AuNPs-assisted separation of ssDNA. Advanced Agrochem, 2(3), 276-283.
Yaylayan, V. A., Locas, C. P., Wnorowski, A., & O'Brien, J. (2004). The role of creatine in the generation of N-methylacrylamide: a new toxicant in cooked meat. Journal of Agricultural and Food Chemistry, 52(17), 5559-5565.