نوع مقاله : مقاله پژوهشی

نویسنده

استادیار

10.22092/fooder.2024.364318.1380

چکیده

فرایند ارزیابی انطباق، به اندازه‌گیری به عنوان منبع اصلی اطلاعات متکی است. در هر اندازه‌گیری نتیجه به‌دست‌آمده همیشه دارای عدم‌قطعیت است. اندازه‌گیری pH از مهم‌ترین و رایج‌ترین آزمون‌های آزمایشگاه‌های غذایی است، نخستین گام تخمین عدم قطعیت، تعیین مدل ریاضی برای اندازه‌گیری است و چون در هیچ‌یک از روش‌های آزمون ذکر شده برای اندازه‌گیری pH، بر خلاف اکثر آزمون‌های دیگر، مدل ریاضی و فرمول محاسباتی وجود ندارد این آزمون برای مطالعه انتخاب شد. برای تخمین عدم قطعیت اندازه‌گیری، از نرم‌افزار Qmsys GUM استفاده شد. نتیجۀ محاسبات  نرم‌افزار با پاسخ دستگاه مقایسه شد. مدل ریاضی تعریف شده برای نرم‌افزار، مقدار pH نمونه کیک را6.985 محاسبه کرد که با عدد خوانده شده توسط دستگاه pHمتر مطابق بود و بیانگر درست نوشته شدن مدل ریاضی است. میزان عدم قطعیت بسط یافته برای آزمون اندازه‌گیری pH، در سطح اطمینان 95.45درصد، به میزان0.029±، معادل  0.42± درصد برآورد گردید که در ارزیابی انطباق نتایج استفاده خواهد شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Conformity assessment of pH measurement test results in food laboratory using uncertainty calculations

نویسنده [English]

  • alborz hajihkhani

استادیار

چکیده [English]

The conformity assessment process relies on measurement as the primary source of information. In any measurement, the obtained result always has uncertainty. pH measurement is one of the most important and common tests in food laboratories, since the first step in uncertainty estimation is to determine the mathematical model for measurement, and because in none of the test methods mentioned, in order to measure pH, unlike most other tests, mathematical models and formulas are used. There is no calculation. This test was selected for study. To estimate the measurement uncertainty, Qmsys GUM software was used. The result of the calculations performed by the software was compared with the response of the device. The mathematical model defined for the software calculated the pH value of the cake sample as 6.985, which was consistent with the number read by the pH meter and indicated that the mathematical model was correctly written. The expanded uncertainty level for the pH measurement test, at the 95.45% confidence level, was estimated as ±0.029, equivalent to ±0.42%, which is used in evaluating the conformity of the results.
 

کلیدواژه‌ها [English]

  • GUM method
  • decision rules
  • Qmsys GUM software
Bettencourt da Silva, A. W. E. (2015). Eurachem /CITAC Guide: Setting and Using Target Uncertainty in Chemical Measurement, Available from www.eurachem.org.
Montgomery, D. C. (2009).  Introduction to statistical quality control, 7th Ed. John Wiley & Sons.
EURACHEM/CITAC Guide CG4. (2012). Quantifying Uncertainty in Analytical Measurement.
ISO 17000: Conformity assessment – Vocabulary and general principles. (2004). in Terms relating to conformity assessment in general, ed. Switzerland: International Organization for Standardization (ISO).
ISO 31000 (2018): Risk management — Guidelines.
ISO/IEC 17025 (2017): General requirements for the competence of testing and calibration.
ISO/IEC Guide 98-1 (2009) Uncertainty of measurement -- Part 1: Introduction to the expression of uncertainty in measurement," ed. Switzerland: International Organization for Standardization (ISO).
ISO/IEC Guide 98-3 (2008) Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). ", ed: International Organization for Standardization (ISO), Geneva.
ISO/IEC Guide 98-4 (2012) Uncertainty of measurement-Part4: Role of measurement uncertainty in conformity assessment," ed. International Organization for Standardization (ISO), Geneva.
ISO/IEC GUIDE 98-4 (2012) Uncertainty of measurement-Part4: Role of measurement uncertainty in conformity assessment," ed. Switzerland: International Organization for Standardization (ISO).
JCGM 101 (2008) Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method, BIPM Joint Committee for Guides in Metrology, Sevres.
JCGM 104 (2009) Evaluation of measurement data – An introduction to the “Guide to the expression of uncertainty in measurement” and related documents, BIPM Joint Committee for Guides in Metrology, Sevres.
JCGM 106 (2012) Evaluation of measurement data – The role of measurement uncertainty in conformity assessment," ed. Joint Committee for Guides in Metrology (JCGM): BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML.
Pendrill, L. R., & Källgren, H. (2008). Optimized measurement uncertainty and decision-making in the metering of energy, fuel, and exhaust gases. Measurement Techniques, 51(4), 370-377.
Pendrill, L. R. (2014). Using measurement uncertainty in decision-making and conformity assessment. Metrologia, 51(4), S206.
NASA HANDBOOK (2010) Estimation and Evaluation of Measurement Decision Risk," NASA-HDBK-8739.19-4.
Pereira, P., Magnusson, B., Theodorsson, E., Westgard, J. O., & Encarnação, P. (2016). Measurement uncertainty as a tool for evaluating the ‘grey zone’to reduce the false negatives in immunochemical screening of blood donors for infectious diseases. Accreditation and Quality Assurance, 21, 25-32.
Ellison, S.L.R. & Williams, A.( 2007). (Eds), Use of uncertainty information in compliance assessment, ed: Eurachem (http: //www. eurachem. org).
Mimbs, S.(2007). ANSI/NCSL Z540.3: Measurement Decision Risk and the 2% Rule, NASA Presentation.