نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری تخصصی بهداشت مواد غذایی، گروه بهداشت و کنترل کیفی موادغذایی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

2 دانشگاه ارومیه

3 استاد تمام، گروه بهداشت و کنترل کیفی موادغذایی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

4 گروه علوم و صنایع غذایی دانشگاه ارومیه

10.22092/fooder.2024.366082.1394

چکیده

بسته­ بندی ضدمیکروب نوعی از بسته ­بندی است که از طریق تماس با غذا یا آزاد­سازی مادۀ ضدمیکروب در فضای بسته­ بندی اثر ضدمیکروبی خود را اعمال می­کند و می­تواند رشد میکروارگانیسم­های عامل فساد و بیماری­زا را در مادۀ­ غذایی کاهش دهد، به تأخیر اندازد یا از آن جلوگیری کند. هدف از این مطالعه، تهیۀ آئروژل سلولزی و آئروژل کامپوزیت سلولز - ثعلب و سپس بارگذاری آن با اسانس آویشن شیرازی برای آزادسازی آن در بسته ­بندی ضدمیکروبی فعال گوشت به‌منظور کنترل اشریشیا کلی طی نگهداری در یخچال است. بدین منظور دو نوع آئروژل سلولز (1.5 درصد وزنی - حجمی) و آئروژل سلولز (1.5 درصد وزنی - حجمی) - ثعلب (3 درصد  وزنی - حجمی) با نسبت 1:1 تهیه شد. با بارگذاری مقادیر مختلف اسانس در ساختار آئروژل­ها، حداقل دوز مهارکنندگی فاز بخار اسانس آویشن برای اشریشیا کلی 256 میکرولیتر اسانس به ازای هر لیتر فضا به دست آمد. تصویرهای میکروسکوپ الکترونی روبشی لیز و تخریب سلولی  اشریشیا کلی را در مواجهه با فاز بخار اسانس آویشن شیرازی نشان می­دهند. جمعیت اشریشیا کلی تلقیح شده در گوشت در نمونۀ کنترل، طی 16 روز نگهداری از log CFU/g 5.34±0.17 به log CFU/g 5.90±0.35  افزایش‌یافته است درحالی‌که در بسته­بندی‌های حاوی تیمار 10 برابر غلظت MID، اسانس بارگذاری شده روی آئروژل سلولزی و سلولز ثعلب به‌ترتیب 0.93 و 0.73 سیکل لگاریتمی کاهش در جمعیت اشریشیا کلی پس از 16 روز نگهداری گوشت در یخچال دیده شد. باتوجه ‌به اهمیت اشریشیا کلی در گوشت، بسته­بندی فعال حاوی ترکیبات ضدمیکروبی می­توانند بیشتر موردتوجه قرار گیرند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Active packaging based on cellulose aerogel loaded with Zataria multiflora essential oil and its antimicrobial effect on Escherichia coli O157:H7 in meat stored in the refrigerator

نویسندگان [English]

  • Seyedeh Sahar Mirmoeini 1
  • Mehran Moradi 2
  • Hossein Tajik 3
  • Hadi Almasi 4

1 PhD Graduate of Food hygiene, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Urmia University

3 Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

4 Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran

چکیده [English]

Antimicrobial packaging is a type of active packaging that exerts its antimicrobial effects through contact with food or through  release of antimicrobial agent in the packaging space and it can delay, reduce or prevent the growth of spoilage and pathogenic microorganisms in food. The aim of this study is to prepare cellulose aerosol and composite cellulose-Salep aerogel and then load it with Zataria multiflora (ZMEO) essential oil in order to release it into active antimicrobial packaging of meat to control Escherichia coli O157:H7 during refrigeration. For this purpose, two types of cellulose aerogel (1.5% W/V) and cellulose aerogel (1.5% W/v) - Salep (3% w/V) were prepared with a ratio of 1:1. By loading different amounts of ZMEO on aerogels, the minimum dose of inhibition of the vapor phase of ZMEO for E. coli was obtained 256 microliters of essential oil per liter of space. Scanning electron microscope images showed the lysis and cell destruction of E. coli, in expose to the vapor phase of ZMEO. While in the meat s amples containing 10 × MID concentration of ZMEO loaded on cellulose and cellulase-Salep aerogel, 0.93 and 0.73 logarithmic cycles of reduction in the population of E. coli after 16 days of meat storage in the refrigerator was determined. Given the importance of E. coli as one of the causes of food-borne diseases due to the lack of hygiene and the need to control it in meat, active packages containing antimicrobial compound releasers can be appropriate solution.

کلیدواژه‌ها [English]

  • Active packaging
  • Zataria multiflora
  • Vapor phase
  • Essential oil
  • Meat
Abdullah, Zou, Y. C., Farooq, S., Walayat, N., Zhang, H., Faieta, M., Pittia, P., & Huang, Q. (2022). Bio-aerogels: Fabrication, properties and food applications. Critical Reviews in Food Science and Nutrition, In press. https://doi.org/10.1080/10408398.2022.2037504Amiri, A., Mottaghipisheh, J., Jamshidi-Kia, F., Saeidi, K., Vitalini, S., & Iriti, M. (2020). Antimicorbial potency of major functional foods’ essential oils in liquid and vapor phases: A short review. Applied Sciences, 10(22), 8103–8112. https://doi.org/10.3390/app10228103
Ares, G., Velázquez, A. L., Vidal, L., Curutchet, M. R., & Varela, P. (2022). The role of food packaging on children’s diet: Insights for the design of comprehensive regulations to encourage healthier eating habits in childhood and beyond. Food Quality and Preference, 95, 104366–104374. https://doi.org/10.1016/j.foodqual.2021.104366
Basti, A. A., Gandomi, H., Noori, N., & Khanjari, A. (2016). Shirazi thyme (Zataria multiflora Boiss ) Oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 731–736). Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00083-3
Beltrán Sanahuja, A., & Valdés García, A. (2021). New trends in the use of volatile compounds in food packaging. Polymers, 13(7), 1053–1062. https://doi.org/https://doi.org/10.3390/polym13071053
Ed-dra, A., Filai, F. R., Bou-idra, M., Zekkori, B., Bouymajane, A., Moukrad, N., Benhallam, F., & Bentayeb, A. (2018). Application of Mentha suaveolens essential oil as an antimicrobial agent in fresh turkey sausages. Journal of Applied Biology & Biotechnolog, 6(1), 7–12. https://doi.org/10.7324/jabb.2018.60102
El-Naggar, M. E., Othman, S. I., Allam, A. A., & Morsy, O. M. (2020). Synthesis, drying process and medical application of polysaccharide-based aerogels. International Journal of Biological Macromolecules, 145, 1115–1128. https://doi.org/10.1016/j.ijbiomac.2019.10.037
Emamifar, A. (2019). Effect of salep-based edible coating enriched with grape seed extract on postharvest shelf life of fresh strawberries. Journal of Food Safety, 39, e12710. https://doi.org/10.1111/jfs.12710
Ghorani, V., Beigoli, S., & Boskabady, M. H. (2022). The effect of Zataria multiflora on respiratory allergic and immunologic disorders , experimental and clinical evidence : A comprehensive review. Phytotherapy Research, 36, 1135–1155. https://doi.org/10.1002/ptr.7382
Han, J. W., Ruiz-Garcia, L., Qian, J. P., & Yang, X. T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4), 860–877. https://doi.org/10.1111/1541-4337.12343
Ji, J., Shankar, S., Royon, F., Salmieri, S., & Lacroix, M. (2023). Essential oils as natural antimicrobials applied in meat and meat products — a review. Critical Reviews in Food Science and Nutrition, 0(0), 1–17. https://doi.org/10.1080/10408398.2021.1957766
López, P., Sánchez, C., Batlle, R., & Nerín, C. (2007). Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. Journal of Agricultural and Food Chemistry, 55(11), 4348–4356. https://doi.org/10.1021/jf063295u
Manzocco, L., Mikkonen, K. S., & García-González, C. A. (2021). Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Structure, 28, 100188–100197. https://doi.org/10.1016/j.foostr.2021.100188
Mirmoeini, S. S., Hosseini, S. H., Lotfi Javid, A., Esmaeili Koutamehr, M., Sharafi, H., Molaei, R., & Moradi, M. (2023). Essential oil-loaded starch/cellulose aerogel: Preparation, characterization and application in cheese packaging. International Journal of Biological Macromolecules, 244, 125356–125365. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.125356
Mukurumbira, A. R., Shellie, R. A., Keast, R., Palombo, E. A., & Jadhav, S. R. (2022). Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control, 136, 108883. https://doi.org/10.1016/j.foodcont.2022.108883
Mukurumbira, A. R., Shellie, R. A., Keast, R., Palombo, E. A., Muir, B. W., & Jadhav, S. R. (2023). The antimicrobial efficacy of native Australian essential oils in liquid and vapour phase against foodborne pathogens and spoilage microorganisms. Food Control, 151, 109774–109783. https://doi.org/https://doi.org/10.1016/j.foodcont.2023.109774
Munekata, P. E. S., Pateiro, M., Rodríguez-Lázaro, D., Domínguez, R., Zhong, J., & Lorenzo, J. M. (2020). The role of essential oils against pathogenic Escherichia coli in food products. Microorganisms, 8(6), 1–16. https://doi.org/10.3390/microorganisms8060924
Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73. https://doi.org/10.1016/j.foodres.2016.02.018
Reyes-Jurado, F., Navarro-Cruz, A. R., Ochoa-Velasco, C. E., Palou, E., López-Malo, A., & Ávila-Sosa, R. (2020). Essential oils in vapor phase as alternative antimicrobials: A review. Critical Reviews in Food Science and Nutrition, 60(10), 1641–1650. https://doi.org/10.1080/10408398.2019.1586641
Saldanha, A., Lima, D., Volcan, D., Haubert, L., Larré, T., Maria, Â., Valmor, C., Padilha, W., de Lima, A. S., Maia, D. V., Haubert, L., Oliveira, T. L., Fiorentini, Â. M., Rombaldi, C. V., & da Silva, W. P. (2020). Action mechanism of araçá (Psidium cattleianum Sabine) hydroalcoholic extract against Staphylococcus aureus. LWT, 119, 108884. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108884
Selvasekaran, P., & Chidambaram, R. (2022). Bioaerogels as food materials : A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocolloids, 131, 107760–107769. https://doi.org/10.1016/j.foodhyd.2022.107760
Songsamoe, S., Khunjan, K., & Matan, N. (2021). The application and mechanism of action of Michelia alba oil vapour in GABA enhancement and microbial growth control of germinated brown rice. Food Control, 130, 108401–108411. https://doi.org/10.1016/j.foodcont.2021.108401
Tao, R., Sedman, J., & Ismail, A. (2021). Antimicrobial activity of various essential oils and their application in active packaging of frozen vegetable products. Food Chemistry, 360, 129956–129966. https://doi.org/10.1016/j.foodchem.2021.129956
Wu, K., Lin, Y., Chai, X., Duan, X., Zhao, X., & Chun, C. (2019). Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli. Food Science & Nutrition, 7(8), 2546–2555. https://doi.org/https://doi.org/10.1002/fsn3.1104
Yan, Y., Ge, F., Qin, Y., Ruan, M., Guo, Z., He, C., & Wang, Z. (2020). Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators. Carbohydrate Polymers, 248, 116755–116764. https://doi.org/10.1016/j.carbpol.2020.116755
Yap, P. S. X., Yusoff, K., Lim, S. H. E., Chong, C. M., & Lai, K. S. (2021). Membrane disruption properties of essential oils-a double-edged sword? Processes, 9(4), 595–604. https://doi.org/10.3390/pr9040595
Zheng, Q., Tian, Y., Ye, F., Zhou, Y., & Zhao, G. (2020). Fabrication and application of starch-based aerogel : Technical strategies. Trends in Food Science & Technology, 99, 608–620. https://doi.org/10.1016/j.tifs.2020.03.038.