نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته حشره شناسی کشاورزی، گروه گیاهپزشکی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 عضوهیات علمی دانشگاه تهران

3 استاد، سازمان تحقیقات، آموزش و ترویج کشاورزی، مؤسسه تحقیقات علوم باغبانی، پژوهشکده میوه‌های معتدله و سردسیری،

4 دانشیار مهندسی هسته ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

5 عضو هیات علمی/دانشکده کشاورزی کرج

10.22092/fooder.2024.366131.1396

چکیده

باتوجه‌ به ضرورت جایگزینی متیل بروماید، تأثیر دُزهای مختلف پرتوگاما و پرتو بتا در کنترل شپشۀ ­داندانه­دار و شب­پرۀ مدیترانه ­ای و خواص بیوشیمیایی میوه در دو رقم خرمای زاهدی و مضافتی بررسی شد. خرمای بسته‌بندی‌شده در معرض دُزهای مختلف 0، 250، 500، 750، 1000 و 1250 گری قرار گرفتند. برای پرتودهی از منبع کبالت-60 و  پرتو بتا با انرژی پرتو 10 مگا الکترون ولت استفاده شد. نتایج بررسی‌ها نشان داد که دُز کشنده 90 درصد پرتو گاما برای حشره کامل شپشۀ دندانه‌دار روی رقم زاهدی معادل 1132.33 گری و روی رقم مضافتی معادل 1172.76 گری و برای لارو شب‌پرۀ مدیترانه‌ای روی رقم زاهدی معادل 1055.16 گری و روی رقم مضافتی معادل 1126.06 گری است. همچنین، دُز کشنده 90 درصد پرتو بتا برای حشره کامل شپشۀ دندانه‌دار روی رقم زاهدی معادل 1160.92 گری و روی رقم مضافتی معادل 1255.97 گری و برای لارو شب‌پرۀ مدیترانه‌ای روی رقم زاهدی معادل 1177.67 گری و روی رقم مضافتی معادل 1340.16 گری است. در هر دو رقم، شیب افزایش شاخص بریکس با افزایش دُز پرتودهی در تیمارهای پرتودهی گاما بالاتر از بتا بود. مقدار قندهای احیاکننده با افزایش تدریجی سطح دُز تابش تا 1250 گری نسبت  به شاهد کاهش یافت. در فاصله دُزهای 500 تا 1000 گری مقاومت نسبت به کاهش مقدار قند مشاهده شد. با افزایش دُز پرتودهی مقدار ترکیبات فنولیک به‌تدریج کاهش یافت. قدرت آنتی‌اکسیدانی آهن آهن با افزایش دُز پرتودهی با شیب ملایمی افزایش نشان داد. تفاوت معنی­داری بـین داده ­های پارامترهای رنگ در شاهد و تیمارهای پرتودهی مشاهده نشد. باتوجه‌به نتایج به‌دست‌آمده پرتودهی میوه خرمای ارقام زاهدی و مضافتی با دُزهای 1000 تا 1250 گری ضمن کنترل دو آفت انباری مهم خرما، تأثیر منفی و معنی­داری بر خواص بیوشیمیایی و ظاهری میوه این ارقام خرما به ­جا نگذاشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of Gamma and Beta radiation on pests and biochemical properties of Zahedi and Mozafati date varieties

نویسندگان [English]

  • Maryam Jalili Moghadam 1
  • Jamasb Nozari 2
  • Masoud Latifian 3
  • Seyed Pezhman Shirmardi 4
  • Mohammad Mousavi 5

1 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Member of the academic faculty of Tehran University

3 Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.

4 Associate professor of nuclear engineering, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

5 Dept. Food Sci. Tecnol. Univ. Tehran

چکیده [English]

Considering the need to replace methyl bromide, the effect of Gamma and beta rays on the control of sawtoothed beetle and Mediterranean moths and the biochemical properties of fruit in two date varieties, Zahedi and Mozafati, were investigated. Packaged dates were exposed to doses of 0, 250, 500, 750, 1000 and 1250 g. Cobalt-60 source and beta radiation of 10 mega electron volts beam energy were used for irradiation. The results showed that the 90% lethal dose (LD90) of gamma radiation for the adult stage of the saw-toothed grain beetle on the Zahedi variety was 1132.33 Gy, and on the Mozafati variety, it was 1172.76 Gy. For the Mediterranean flour moth larvae, the LD90 on the Zahedi variety was 1055.16 Gy, and on the Mozafati variety, it was 1126.06 Gy. Furthermore, the 90% lethal dose (LD90) of beta radiation for the adult stage of the saw-toothed grain beetle on the Zahedi variety was 1160.92 Gy, and on the Mozafati variety, it was 1255.97 Gy. For the Mediterranean flour moth larvae, the LD90 on the Zahedi variety was 1177.67 Gy, and on the Mozafati variety, it was 1340.16 Gy. In both figures, the slope of the Brix index increased with increasing radiation dose and was higher in Gamma radiation treatments than in Beta radiation. The content of reducing sugars decreased with the gradual increase of the radiation dose level up to 1250 Gy compared to the control. Resistance to sugar content reduction was observed between 500 and 1000 g doses. With increasing radiation dose, the phenolic compound content gradually decreased. Also, the iron oxidation-reduction potential increased with increasing radiation dose. No significant difference was observed between the data of color parameter treatments. Results indicated that irradiation of date fruits of Zahedi and Mozafati cultivars of the estimated doses 1000 to 1250 Gy controlled two important storage pests of dates; bedide that, irradiation did not have significant negative effect on the biochemical properties of date cultivars.

کلیدواژه‌ها [English]

  • Disinfection
  • Irradiation
  • Damaging factors
  • fruit quality
Ahmed, S. S., Naroz, M. H., & El-Mohandes, M. A. (2022). Use of modified atmospheres combined with phosphine in controlling stored date fruit pests, Oryzaephilus surinamensis and Tribolium confusum, and effect on the fruit chemical properties. International Journal of Tropical Insect Science, 42(2), 1933-1941.
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877.
Al-Farsi, M., Al-Amri, M., Al-Rawahi, F., Al-Abid, M., & Gohs, U. (2010, March). Disinfestation of dates using Beta beams in comparison with other treatments. In IV International Date Palm Conference 882 (pp. 569-576).
Alinezhad, M., Hojjati, M., Barzegar, H., Shahbazi, S., & Askari, H. (2021). Effect of Gamma irradiation on the physicochemical properties of pistachio (Pistacia vera L.) nuts. Journal of Food Measurement and Characterization, 15, 199-209.
Al-Kahtani, H. A., Abu-Tarboush, H. M., Al-Dryhim, Y. N., Ahmed, M. A., Bajaber, A. S., Adam, E. S. E., & El-Mojaddidi, M. A. (1998). Irradiation of dates: insect disinfestation, microbial and chemical assessments, and use of thermoluminescence technique. Radiation Physics and Chemistry, 53(2), 181-187.
Al-Kahtani, H. A., Abu-Tarboush, H. M., Al-Dryhim, Y. N., Ahmed, M. A., Bajaber, A. S., Adam, E. S. E., & El-Mojaddidi, M. A. (1998). Irradiation of dates: insect disinfestation, microbial and chemical assessments, and use of thermoluminescence technique. Radiation Physics and Chemistry, 53(2), 181-187.
Alsaed, A. K., Mehyar, G. F., & Arar, A. (2013). Effect of harvesting time and storage temperature on the duration of Balah stage of'Barhi'dates. Italian Journal of Food Science, 25(3).
Aly, A. M., Eliwa, N., & AbdEl-Megid, M. H. (2019). Stimulating effect of Gamma radiation on some active compounds in eggplant fruits. Egyptian Journal of Radiation Sciences and Applications, 32(1), 61-73.
Azelmat, K., Sayah, F., Mouhib, M., Ghailani, N., & Elgarrouj, D. (2005). Effects of Gamma irradiation on fourth-instar Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 41(4), 423-431.
Baghel, B. S., Gupta, N., Khare, A., & Tiwari, R. (2005). Effect of different doses of Gamma radiation on shelf-life of guava. Indian Journal of Horticulture, 62(2), 129-132.
Cleland, M. R., Herer, A. S., & Cokragan, A. (2020). Economics of machine sources for irradiation of food. In Irradiation for Food Safety and Quality (pp. 158-168). CRC Press.
de Jesus, O. N., Lima, L. K. S., dos Santos, I. S., dos Santos, M. A., & Rosa, R. C. C. (2023). Bright red passion fruit-evaluation of colorimetry and physicochemical quality for the fresh fruit market. Scientia Horticulturae, 317, 112016.
Dehghan‐Shoar, Z., Hamidi‐Esfahani, Z. & Abbasi, S. (2010). Effect of temperature and modified atmosphere on quality preservation of Sayer date fruits (Phoenix dactylifera L.). Journal of Food Processing and Preservation, 34(2), 323-334.
Fields, P. G., & White, N. D. (2002). Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annual Review of Entomology, 47(1), 331-359.
Flowers, J. M., Hazzouri, K. M., Lemansour, A., Capote, T., Gros-Balthazard, M., Ferrand, S., ... & Purugganan, M. D. (2022). Patterns of volatile diversity yield insights into the genetics and biochemistry of the date palm fruit volatilome. Frontiers in Plant Science, 13, 853651.
Gadalla, E. G., Lewaa, L. M., El-Shafei, W. K. M., & Assous, M. T. M. (2022). Effect of Physical Methods on Date Fruits Insects and Microbes. Asian Research Journal of Agriculture, 15(4), 124-133.
Ghadi, F. E., Ghara, A. R., & Ghanbari, T. (2015). Effect of Gamma irradiation on the total phenolic content and free radicalscavenging activity of Iranian date palm Mazafati (Phoenix dactylifera L.). International Journal of Latest Research in Science and Technology, 4(5), 149-153.
Hallman, G. J. (1998). Ionizing radiation quarantine treatments. Anais da Sociedade Entomológica do Brasil, 27, 313-323.
Harrison, K., & Were, L. M. (2007). Effect of Gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chemistry, 102(3), 932-937.
Hasan, M., & Mohieldein, A. (2016). In vivo evaluation of anti-diabetic, hypolipidemic, antioxidative activities of Saudi date seed extract on streptozotocin induced diabetic rats. Journal of Clinical and Diagnostic Research: JCDR, 10(3), FF06.
Hojjati, M., Shahbazi, S., Askari, H., Nafchi, A. M., & Makari, M. (2024). Impact of the Gamma and Beta beam irradiations on yeast-spot disease fungal agent and physicochemical attributes of hazelnut (Corylus avellana L.). Radiation Physics and Chemistry, 216, 111469.
Hosseinzadeh, A., Shayesteh, N., Zolfagharieh, H. R., Babaei, M., Zareshahi, H., Mostafavi, H. A., & Fatollahi, H. (2010). Gamma radiation sensitivity of different stages of saw-toothed grain beetle Oryzaephilus surinamensis L. (Coleoptera: Silvanidae). Journal of Plant Protection Research.
Kamal-Eldin, A., & Ghnimi, S. (2018). Classification of date fruit (Phoenix dactylifera, L.) based on chemometric analysis with multivariate approach. Journal of Food Measurement and Characterization, 12(2), 1020-1027.
Kays, S. J., & Paull, R. E. (2004). Postharvest biology. Exon Press. 568 pp.
Kunstadt, P. (2020). Economics of food irradiation. In Irradiation for Food Safety and Quality (pp. 129-157). CRC Press.
Latifian, M, (2013). Date Palm Stored Pests Control. Ahangghalam Publisher, Mashhad, Iran, 100 PP.
Latifian, M., Moghadam, M. J., & Jahromi, S. R. (2021). Competition and overlap of Oryzaephilus surinamensis and Plodia interpunctella populations under condition of stored date fruits. Journal of Asia-Pacific Entomology, 24(1), 201-207.
Mahdi, K. H., Hussain, H. S., & Saad, M. T. (2017). The optimal irradiation of Iraqi dates fruit by gamma radiation for disinfestation purposes. Advances in Physics Theories and Applications, 61, 50-56.
Majid, A., Naz, F., Bhatti, S., & Phull, A. R. (2023). Phenolic profile and antioxidant activities of three date seeds varieties (Phoenix Dactylifera L.) of Pakistan. Exploratory Research and Hypothesis in Medicine, 8(3), 195-201.
Makari, M., Hojjati, M., Shahbazi, S., & Askari, H. (2021). Effect of Co-60 Gamma irradiation on Aspergillus flavus, Aflatoxin B1 and qualitative characteristics of pistachio nuts (Pistacia vera L.). Journal of Food Measurement and Characterization, 15(6), 5256-5265.
Mastrangelo, T., & Walder, J. (2011). Use of radiation and isotopes in insects. Radioisotopes–Applications in Bio-medical Science, 67-92.
Mrabet, A., Jiménez-Araujo, A., Fernández-Bolaños, J., Rubio-Senent, F., Lama-Muñoz, A., Sindic, M., & Rodríguez-Gutiérrez, G. (2016). Antioxidant phenolic extracts obtained from secondary Tunisian date varieties (Phoenix dactylifera L.) by hydrothermal treatments. Food Chemistry, 196, 917-924.
Osman, K. A., Al-Humaid, A. I., Al-Redhaiman, K. N., & El-Mergawi, R. A. (2014). Safety methods for chlorpyrifos removal from date fruits and its relation with sugars, phenolics and antioxidant capacity of fruits. Journal of Food Science and Technology, 51, 1762-1772.
Piccirillo, V. J., & Piccirillo, A. L. (2010). Methyl bromide. In Hayes' Handbook of Pesticide Toxicology (pp. 2267-2279). Academic Press.
Robertson, J. L., Jones, M. M., Olguin, E., & Alberts, B. (2017). Bioassays with arthropods. CRC press. 212  pp. 
Rosenblatt, E., Acuña, O., & Abdel-Wahab, M. (2015). The challenge of global radiation therapy: an IAEA perspective. International Journal of Radiation Oncology, Biology, Physics, 91(4), 687-689.
Sporchia, F., Patrizi, N., & Pulselli, F. M. (2023). Date fruit production and consumption: a perspective on global trends and drivers from a multidimensional footprint assessment. Sustainability, 15(5), 4358.
Tafti, A. G., & Fooladi, M. H. (2005). Changes in physical and chemical characteristics of Mozafati date fruit during development. Journal of Biological Sciences, 5(3), 319-322.
Tilton, E. W., & Brower, J. H. (2018). Radiation effects on arthropods. In Preservation of food by ionizing radiation (pp. 269-316). CRC Press.
Tomás‐Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876.
Yahia, E. M., Lobo, M. G., & Kader, A. A. (2013). Harvesting and postharvest technology of dates. Dates: Postharvest Science, Processing Technology and Health Benefits, 105-135.
Yam, K. L., & Papadakis, S. E. (2004). A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of Food Engineering, 61(1), 137-142.
Zarbakhsh, S., & Rastegar, S. (2019). Influence of postharvest Gamma irradiation on the antioxidant system, microbial and shelf life quality of three cultivars of date fruits (Phoenix dactylifera L.). Scientia Horticulturae, 247, 275-286.
Zhang, C. R., Aldosari, S. A., Vidyasagar, P. S. P. V., Shukla, P., & Nair, M. G. (2015). Determination of the variability of sugars in date fruit varieties. Journal of Plantation Crops, 43(1), 53-61.
Zineb, G., Boukouada, M., Djeridane, A., Saidi, M., & Yousfi, M. (2012). Screening of antioxidant activity and phenolic compounds of various date palm (Phoenix dactylifera) fruits from Algeria. Mediterranean Journal of Nutrition and Metabolism, 5(2), 119-126.