نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، پردیس بین‌المللی ارس، دانشگاه تهران، تهران، ایران

2 عضو هیات علمی دانشکده کشاورزی دانشگاه تهران

3 پردیس کشاورزی و منابع طبیعی دانشگاه تهران

4 گروه علوم و صنایع غذایی - کرج - دانشگاه تهران

10.22092/fooder.2025.365755.1392

چکیده

در این تحقیق، از دستگاه الکتروریسی برای تولید نانوحامل ترکیبی بر پایۀ پروتئین ماش (VPr) و کمک پلیمر پلی وینیل الکل (PVA) استفاده شد. برای مدل‌سازی و بهینه‌سازی فرایند از روش سطح پاسخ (RSM) بر طبق متغیرهای ورودی شامل نسبت کمک پلیمر PVA (65 35 درصد وزنی)، سرعت پمپ (1.5 0.5 میلی‌لیتر بر ساعت)، فاصلۀ بین نوک سوزن تا جمع کننده (20 10 سانتی‌متر) و ولتاژ اعمال شده (25 12.5 کیلوولت) استفاده گردید. طرح مرکب مرکزی (CCD) برای اجرا و تجزیه و تحلیل مدل استفاده شد و آنالیز ریخت‌شناسی توسط میکروسکوپ الکترونی روبشی (SEM) نتایج بهینه‌سازی الکتروریسی را تأیید کرد. نتایج خواص محلول نانوحامل VPr-PVA از جمله ویسکوزیته (20.99 سانتی پوآز)، هدایت الکتریکی (254.18 میکروزیمنس بر سانتی‌متر) و کشش سطحی (38.14 میلی نیوتن بر متر) تعیین گردید. بر این اساس، شرایط بهینه برای ساخت نانوحامل عملکردی VPr-PVA با قطر پیش‌بینی شده - صحت سنجی شده 332.9 - 345.7 نانومتر شامل غلظت 52.5 درصد وزنی نسبت کمک پلیمرPVA یک میلی‌لیتر بر ساعت سرعت پمپ، فاصلۀ 13.5 سانتی‌متری بین نوک سوزن تا جمع کننده و 20 کیلوولت ولتاژ اعمالی ارزیابی شد. تجزیه و تحلیل SEM تأیید کرد که نانوحامل‌های VPr-PVA در نقطۀ بهینه بدون مهره، دارای سطوح همگن، صاف و با توزیع نرمال هستند. بر طبق نتایج این تحقیق، پروتئین ماش پتانسیل تولید نانوفیبرهای یکنواخت و متخلخل و استفاده به عنوان نانو حامل ترکیبات زیست فعال را از خود نشان داد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimization of the electrospinning process of hybrid nanocarrier based on mung bean (Vigna radiate L.) protein / poly(vinyl alcohol)

نویسندگان [English]

  • Rasoul Asadzadeh 1
  • Gholamreza Askari 2
  • Mohammad Ekrami 4

1 Department of Food Science and Industry, Ares International Campus, University of Tehran, Tehran, Iran

2 University of Tehran

3

4 Department of Food Science and Technology- Karaj - University of Tehran

چکیده [English]

In this research, an electrospinning apparatus was used to fabricate a composite nanocarriers based on Vigna radiata L. protein (VPr) and polyvinyl alcohol (PVA) polymer. For modeling and optimization using the response surface method (RSM) with input variables including PVA polymer ratio (35-65%w/w), pump rate (0.5-1.5 mL/h), distance between needle tip and collector (10-20 cm) and applied voltage (12.5-25 kV) were used. Central composite design (CCD) was used to implement and analyze the model, and morphological analysis by scanning electron microscope (SEM) confirmed the electrospinning optimization results. The results of the properties of the VPr-PVA nanocarrier’s solution including viscosity (20.99 cp), electrical conductivity (254.18 µS/cm) and surface tension (38.14 mN/m) were determined. The optimal conditions for the production of VPr-PVA functional nanocarriers with the predicted diameter - verified 332.9 - 345.7 nm, including the concentration of 52.5%w/w PVA ratio, 1 mL/h, pump rate, 13.5 cm distance between the tip of the needle and the collector, 20 kV applied voltage was evaluated. SEM analysis confirmed that the VPr-PVA nanocarriers at the optimum point without beads have homogeneous, smooth and normally distributed surfaces. According to the results of this research, Vigna radiata L. protein showed the potential to produce uniform and porous nanofibers and use as a nanocarriers of bioactive compounds.
 

کلیدواژه‌ها [English]

  • Electrospinning
  • Vigna Radiate L
  • Encapsulation
  • RSM
  • Optimization
 Akhouy, G., Aziz, K., Gebrati, L., El Achaby, M., Akgul, Y., Yap, P.-S., . . . Aziz, F. (2023). Recent applications on biopolymers electrospinning: Strategies, challenges and way forwards. Polymer-Plastics Technology and Materials, 62(13), 1754-1775.
Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845.
Chinnappan, B. A., Krishnaswamy, M., Xu, H., & Hoque, M. E. (2022). Electrospinning of biomedical nanofibers/nanomembranes: effects of process parameters. Polymers, 14(18), 3719.
Dehnad, D., Emadzadeh, B., Ghorani, B., Rajabzadeh, G., Tucker, N., & Jafari, S. M. (2023). Bioactive-loaded nanovesicles embedded within electrospun plant protein nanofibers; a double encapsulation technique. Food Hydrocolloids, 108683.
Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., . . . Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131-140.
Ebadi Ghareh Koureh, L., Ganjloo, A., Hamishehkar, H., & Bimakr, M. (2023). Fabrication and characterization of costmary essential oil loaded salep-polyvinyl alcohol fast-dissolving electrospun nanofibrous mats. Journal of Food Measurement and Characterization, 17(3), 3076-3093.
Ekrami, M., Ekrami, A., Esmaeily, R., & Emam-Djomeh, Z. (2022a). Nanotechnology-based formulation for alternative medicines and natural products: an introduction with clinical studies.
Ekrami, M., Ekrami, A., Moghadam, R. H., Joolaei-Ahranjani, P., & Emam-Djomeh, Z. (2022b). Food-based polymers for encapsulation and delivery of bioactive compounds.
Ekrami, M., Roshani-Dehlaghi, N., Ekrami, A., Shakouri, M., & Emam-Djomeh, Z. (2022c). pH-Responsive Color Indicator of Saffron (Crocus sativus L.) Anthocyanin-Activated Salep Mucilage Edible Film for Real-Time Monitoring of Fish Fillet Freshness. Chemistry, 4(4), 1360-1381.
Ekrami, M., Shakouri, M., Nikkhou, S., & Emam-Djomeh, Z. (2023). Extraction and physicochemical characterization of gum. In Handbook of Natural Polymers, Volume 1 (pp. 597-630): Elsevier.
Emam-Djomeh, Z., Ekrami, M., Mobahi, N., & Roshani-Dehlaghi, N. (2025). Surface characterization of bionanocomposites. In Characterization Techniques in Bionanocomposites (pp. 85-107): Elsevier.
Emam‐Djomeh, Z., Ekrami, M., Ekrami, & Ali. (2023a). Overview of Types of Materials Used for Food Component Encapsulation. Materials Science and Engineering in Food Product Development, 73-92.
Emam‐Djomeh, Z., Ekrami, M., & Ekrami, A. (2023b). Design and Use of Hydrogels for Food Component Encapsulation. Materials Science and Engineering in Food Product Development, 211-226.
Farahmand, E., Emam-Djomeh, Z., Ekrami, M., & Razavi, S. H. (2023). Polymethacrylate coated electrospun chitosan/PEO nanofibers loaded with thyme essential oil: a newfound potential for antimicrobial food packaging. Journal of Food and Bioprocess Engineering, 6(2), 8-16.
Feng, K., Huangfu, L., Liu, C., Bonfili, L., Xiang, Q., Wu, H., & Bai, Y. (2023). Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers, 15(10), 2402.
Hwang, T. I., Kim, I. G., Lee, J. H., Hwang, J. H., Kim, J. I., Park, C. H., & Kim, C. S. (2019). QCN-Based Analysis for Predicting the Quality of Resulting Electrospun Nanofiber: Effect of Real-Time Transient Rheological Properties of Precursor Solution on Electrospinning. Journal of Nanoscience and Nanotechnology, 19(4), 2399-2403.
Ibrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647.
Kailasa, S., Reddy, M. S. B., Maurya, M. R., Rani, B. G., Rao, K. V., & Sadasivuni, K. K. (2021). Electrospun nanofibers: materials, synthesis parameters, and their role in sensing applications. Macromolecular Materials and Engineering, 306(11), 2100410.
Kebede, T. G., Dube, S., & Nindi, M. M. (2018). Fabrication and characterization of electrospun nanofibers from Moringa stenopetala seed protein. Materials Research Express, 5(12), 125015.
Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
Lenth, R. V. (2010). Response-surface methods in R, using rsm. Journal of Statistical Software, 32, 1-17.
Maftoonazad, N., Shahamirian, M., John, D., & Ramaswamy, H. (2019). Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Materials Science and Engineering: C, 94, 393-402.
Mirzakhani, M., Ekrami, M., & Moini, S. (2018). Chemical composition, total phenolic content and antimicrobial activities of Zhumeria majdae. Journal of Food and Bioprocess Engineering, 1(1), 47-52.
Mosayebi, V., Fathi, M., Shahedi, M., Soltanizadeh, N., & Emam-Djomeh, Z. (2022). Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. Food Bioscience, 47, 101759.
Nakhzari Moghaddam, A., Ghelichi Yanghagh, H., Biabani, A., & Taliey, F. (2020). The effect of nitrogen and irrigation interval on quantity traits and protein of mung bean (Vigna radiata L.) genotypes under non fixation of nitrogen. Journal of Crops Improvement, 22(2), 205-215.
Nazemi, M. M., Khodabandeh, A., & Hadjizadeh, A. (2022). Near-field electrospinning: crucial parameters, challenges, and applications. ACS Applied Bio Materials, 5(2), 394-412.
Pires, J. B., Dos Santos, F. N., de Lima Costa, I. H., Kringel, D. H., da Rosa Zavareze, E., & Dias, A. R. G. (2023). Essential oil encapsulation by electrospinning and electrospraying using food proteins: A review. Food Research International, 170, 112970.
Ramos, S. d. P., Giaconia, M. A., Do Marco, J. T., Paiva, R. d. S., De Rosso, V. V., Lemes, A. C., . . . Longo, E. (2020). Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. Colloids and Interfaces, 4(2), 14.
Senthilkumar, T., Chattopadhyay, S., & Miranda, L. R. (2017). Optimization of activated carbon preparation from pomegranate peel (Punica granatum peel) using RSM. Chemical engineering communications, 204(2), 238-248.
Tadayon, M., & Bahador, M. (2018). Effect of Deficit Irrigation on Yield, Yield Components and Protein Content of Some Mung Bean (Vigna radiata L.) Genotypes. Isfahan University of Technology-Journal of Crop Production and Processing, 8(2), 97-107.
Tahir, M., Vicini, S., & Sionkowska, A. (2023). Electrospun materials based on polymer and biopolymer blends—a review. Polymers, 15(7), 1654.
Wang, Y., Khan, M. A., Chen, K., Zhang, L., & Chen, X. (2023). Electrospinning of natural biopolymers for innovative food applications: A review. Food and Bioprocess Technology, 16(4), 704-725.
wen Jia, X., yu Qin, Z., xin Xu, J., hua Kong, B., Liu, Q., & Wang, H. (2020). Preparation and characterization of pea protein isolate-pullulan blend electrospun nanofiber films. International journal of biological macromolecules, 157, 641-647.
Yao, F., Gao, Y., Chen, F., & Du, Y. (2022). Preparation and properties of electrospun peanut protein isolate/poly-l-lactic acid nanofibers. LWT, 153, 112418.
Zahra, F. T., Quick, Q., & Mu, R. (2023). Electrospun PVA fibers for drug delivery: A review. Polymers, 15(18), 3837.
Zeinali, T., Alemzadeh, E., Zarban, A., Khorashadizadeh, M., & Ansarifar, E. (2021). Fabrication and characterization of jujube extract‐loaded electrospun polyvinyl alcohol nanofiber for strawberry preservation. Food science & nutrition, 9(11), 6353-6361.
Zhao, Y.-M., Li, Y., Ma, H., & He, R. (2023). Effects of ultrasonic-assisted pH shift treatment on physicochemical properties of electrospinning nanofibers made from rapeseed protein isolates. Ultrasonics Sonochemistry, 94, 106336.
Ziyadi, H., Baghali, M., Bagherianfar, M., Mehrali, F., & Faridi-Majidi, R. (2021). An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Advanced Composites and Hybrid Materials, 4, 768-779.