نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه کردستان، دانشکده مهندسی، گروه مهندسی شیمی

10.22092/fooder.2025.366792.1401

چکیده

کاهش نمک از آب ­پنیر باعث بهبود کیفیت و طعم نهایی محصولات لبنی می‌شود و به حفظ سلامت مصرف‌کنندگان کمک می‌کند. کاهش نمک همچنین می‌تواند به افزایش قابلیت استفادۀ مجدد از آب­پنیر و کاهش آلودگی محیط‌زیست کمک کند. در تحقیق حاضر از رزین‌های کاتیونی برای کاهش غلظت نمک آب ­پنیر استفاده گردید. مقدار 50 میلی ­لیتر آب ­پنیر با  50 گرم رزین طبق طراحی آزمایش با روش پاسخ سطح در بازه دمای حرارت­ دهی با آون 40 تا 60  درجه سلسیوس و زمان فرآیند 6 تا 24 ساعت نمک‌زدایی گردید. پس از بهینه ­سازی، نتایج به­ دست آمده نشان داد دمای 51 درجه سلسیوس و مدت زمان 17 ساعت مناسب­ترین حالت برای نمک‌زدایی از آب ­پنیر است که در این حالت بیشترین میزان حذف نمک، 42 درصد، به ­دست آمد. نتایج حاصل از آنالیزهای UV-Vis به­ منظور بررسی میزان رنگ و کدورت نشان از کاهش به ترتیب 30 درصد و 26 درصد داشت و DLS برای ارزیابی میانگین اندازۀ ذرات دارای مقادیر1700 و 1200 نانومتر قبل و بعد از نمک‌زدایی، شاخص پراکندگی 946/0 و 624/0 و پتانسیل زتا اختلاف معناداری نداشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Optimizing the operating conditions of temperature and time of whey desalination process using cationic resins by response surface method

نویسنده [English]

  • Omid Ahmadi

Faculty of Engineering, University of Kurdistan, Sanandaj, Iran

چکیده [English]

Reducing salt from whey is very important because it improves the quality and final taste of dairy products while also helping to maintain the health of consumers. Reducing the salt can enhance the reusability of whey and minimize environmental pollution. In the current research, cationic resins were used to decrease the salt concentration in whey. An amount of 50 mL of whey was treated with 50 g of resin according to the experimental design using the response surface methodology, within a heating temperature range of 40 to 60 °C over various process times. The desalination process was conducted for 6 to 24 hours. After optimization, the results indicated that a temperature of 51 °C and duration of 17 hours were the most suitable conditions for whey desalination, with the highest percentage of salt removal achieved at 42%. The results of UV-Vis analysis showed a decrease in color and turbidity of 30% and 26%, respectively. Additionally, DLS measurements for average particle size yielded values of 1700 nm and 1200 nm before and after desalination. The dispersion indices were 0.946 and 0.624, respectively, and no significant difference in zeta potential was observed.

کلیدواژه‌ها [English]

  • Whey
  • cationic resin
  • response surface
  • operating conditions
Ahmadi, O., & Jafarizadeh-Malmiri, H. (2021). Intensification and optimization of the process for thyme oil in water nanoemulsions preparation using subcritical water and xanthan gum. Zeitschrift für Physikalische Chemie, 235(5), 629-648.
Budiyanto, A., & Usmiati, S. (2022). The Effect of Carbon Sources and Whey Storage on Physicochemical and Organoleptic Properties of Nata de Whey. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Chen, G. Q., Qu, Y., Gras, S. L., & Kentish, S. E. (2023). Separation technologies for whey protein fractionation. Food Engineering Reviews, 15(3), 438-465.
De Winter, W., Van Dam, D., Delbecque, N., Verdoodt, A., Ruessink, B., & Sterk, G. (2018). Measuring high spatiotemporal variability in saltation intensity using a low-cost Saltation Detection System: Wind tunnel and field experiments. Aeolian Research, 31, 72-81.
Dzyazko, Y., Borysenko, Y., Zmievskii, Y., Zakharov, V., Myronchuk, V., & Kolomiets, E. (2022). Organic-inorganic ion exchange materials for electromembrane processing of liquid wastes produced dairy industry. Materials Today: Proceedings, 50, 496-501.
Dzyazko, Y., Zakharov, V., Kolomiiets, Y., & Kudelko, K. (2020). Composite ion-exchanges for the recycling of liquid waste of dairy industry. Ukrainian Chemistry Journal, 86(5), 38-52.
Eshghi, M., Kamali-Shojaei, A., Vaghari, H., Najian, Y., Mohebian, Z., Ahmadi, O., & Jafarizadeh-Malmiri, H. J. G. P. (2021). Corylus avellana leaf extract-mediated green synthesis of antifungal silver nanoparticles using microwave irradiation and assessment of their properties. Green Processing Synthesis, 10(1), 606-613.
Fassina, P., Nunes, G. Q., Adami, F. S., Goettert, M. I., & Volken de Souza, C. F. (2019). Importance of cheese whey processing: supplements for sports activities-a review. Polish Journal of food nutrition sciences, 69(1).
Guo, B., Zhang, L., Cao, L., Zhang, T., Jiang, F., & Yan, L. (2018). The correction of temperature-dependent Vickers hardness of cemented carbide base on the developed high-temperature hardness tester. Journal of Materials Processing Technology, 255, 426-433.
Hamoud Alshahrani, S., Alameri, A. A., Zabibah, R. S., Turki Jalil, A., Ahmadi, O., & Behbudi, G. (2022). Screening method synthesis of AgNPs using Petroselinum crispum (parsley) leaf: Spectral analysis of the particles and antibacterial study. Journal of the Mexican Chemical Society, 66(4), 480-487.
Hashemilar, H., Jafarizadeh-Malmiri, H., Ahmadi, O., & Jodeiri, N. J. I. J. o. B. M. (2023). Enzymatically preparation of starch nanoparticles using freeze drying technique–gelatinization, optimization and characterization. 237, 124137.
Hirsch, D. B., Álvarez, L. M. M., Urtasun, N., Baieli, M. F., Lázaro-Martínez, J. M., Glisoni, R. J., . . . Wolman, F. (2020). Lactoferrin purification and whey protein isolate recovery from cheese whey using chitosan mini-spheres. International Dairy Journal, 109, 104764.
Khanal, B. K. S., Pradhan, M., & Bansal, N. (2019). Cheese: Importance and introduction to basic technologies. Journal of Food Science Technology Nepal, 11, 14-24.
Mehla, R., Kumari, A., Dhankhar, J., Bumbadiya, M., & Tyagi, A. (2020). Whey: Importance and Techno-functional Applications. Dairy Processing: Advanced Research to Applications, 161-179.
Özer, B., & Evrendilek, G. A. (2022). Whey beverages. In Dairy Foods (pp. 117-137): Elsevier.
Radosavljević, J., Stanić-Vučinić, D., Stojadinović, M., Radomirović, M., Simović, A., Radibratović, M., & Veličković, T. Ć. (2022). Application of ion exchange and adsorption techniques for separation of whey proteins from bovine milk. Current Analytical Chemistry, 18(3), 341-359.
Siriwardana, J., & Wijesekara, I. (2021). Analysis of the effectiveness of an antimicrobial edible coating prepared from sweet whey base to improve the physicochemical, microbiological, and sensory attributes of swiss cheese. Advances in Agriculture, 2021(1), 5096574.
Suleimanov, B. A., Latifov, Y. A., Veliyev, E. F., & Frampton, H. (2018). Comparative analysis of the EOR mechanisms by using low salinity and low hardness alkaline water. Journal of Petroleum Science Engineering, 162, 35-43.
Talebi, S., Kee, E., Chen, G. Q., Bathurst, K., & Kentish, S. E. (2019). Utilisation of salty whey ultrafiltration permeate with electrodialysis. International Dairy Journal, 99, 104549.
Wai, K., Zhong, N., Feng, Y., & Xu, Y. (2024). Salt Reduction: Product Challenges, Approaches, and Application of Flavors. In Flavor-Associated Applications in Health and Wellness Food Products (pp. 197-224): Springer.